
MAKING ARGUMENT SYSTEMS

COMPUTATIONALLY ATTRACTIVE

Argument Construction and Maintenance 1

Alejandro J. Garćıa, Carlos I. Chesñevar, and Guillermo R. Simari 2

Departamento de Matemática, Universidad Nacional del Sur,

Alem 1253, (8000) Bah́ıa Blanca, ARGENTINA.

Phone: (54) (91) 20776 (ext. 317), fax: (54) (91) 551447

e-mail: grs@arcriba.edu.ar

1. INTRODUCTION

Argumentative systems (Pollock,1987; Vreeswijk, 1989; Prakken, 1993) are forma-

lizations of the process of “defeasible reasoning”, i.e., reasoning to reach conclusions

that could be discarded when new evidence appears. An argument for a conclusion p

is a tentative piece of reasoning an agent would accept to explain p. If the agent gets

new information, the conclusion p together with the argument that supported p may no

longer be valid. In that way nonmonotonicity arises. The analysis of the relationships

among arguments naturally captures many features of commonsense reasoning, which

could be unclear or difficult to introduce in other frameworks, such as Default Logic

(Reiter, 1980), Nonmonotonic Logic (McDermott & Doyle, 1980), Autoepistemic Logic

(Moore, 1985) and Circumscription (McCarthy,1980).

A query q is a request to the system for justifying q. The justification process

involves the construction of an acceptable argument for q from the information stored

in the system’s knowledge base (KB). To decide the acceptability of an argument A,

possible counterarguments for A are generated. These counterarguments are in turn

tested for acceptability. Those which are accepted are then compared with A using a

specificity relationship, which defines a partial ordering among arguments.

1Published in the XIII International Congress of the Chilean Computer Science Society, La Serena,
Chile, October 1993.

2Members of the Artificial Intelligence Research Group (Grupo de Investigación en Inteligencia
Artificial, GIIA), Universidad Nacional del Sur, ARGENTINA.

1

Computing justifications requires considerable effort, therefore it is desirable that

the system would be able to save work already done. This repository, an Arguments

Base, would contain all the justifications the agent has computed in the past and remain

valid.

An intelligent agent must be able to act in a changing environment, learning new

facts about the world. By incorporating a new fact into the knowledge base, old con-

clusions might become invalid, and new arguments, or counterarguments, could be

obtained. The key to the problem is to detect which of the arguments saved in the

Arguments Base will be affected by the addition of that new fact.

This paper describes the implementation issues of a defeasible reasoning system,

the ARGUS system, following the Simari and Loui’s approach (Simari & Loui, 1992).

Our approach includes some novel features such as an Arguments Maintenance System

(AMS) to improve the performance of the reasoner, an optimized argument construc-

tion procedure, a consistency check procedure embedded in the inference engine, and

a pruning strategy for defeasible inference trees. In order to facilitate the specifica-

tion of the algorithms that implement these features, new concepts and definitions are

introduced.

2. ARGUMENTS

In this section we will briefly mention the construction of a formal system IL. This

formalism will provide a language to represent the knowledge of a given agent A who

will perform her defeasible reasoning through the formulation of tentative arguments

using that language (see Simari & Loui (1992) for further details). These arguments

will be the subject of a screening process that will establish a preference order on

them. Finally, when counterarguments are found, they will in turn be compared with

the original argument using the preference partial order.

The language of IL in which A will represent her beliefs is composed of a first order

language L, plus a binary meta-linguistic relation defined on the set of non-closed

literals of L. The members of the meta-linguistic relation are called defeasible rules

and they have the form α >−− β, where α and β must be non-closed well-formed

formulas (wffs) in L. The relation “ >−− ” is understood as expressing that “reasons to

believe in the antecedent α provide reasons to believe in the consequent β”.

We denote with Sent(L) the set of sentences of L. Let K be a consistent subset

of Sent(L) called the context. K represents the beliefs of A, and can be partitioned in

two subsets corresponding to necessary (general) SentN (L) and contingent (particular)

information SentC(L). In mapping A’s reality to the set K we obtain a partition of it

in two subsets KG = SentN (L) ∩ K and KP = SentC(L) ∩ K. Clearly, K = KG ∪ KP .

The beliefs of A are represented in IL by a pair (K, ∆), called Defeasible Logic

Structure, where ∆ is a finite set of defeasible rules. K represents the non-defeasible

2

part of A’s knowledge and ∆ represents information that A is prepared to take at less

than face value. ∆
↓

denotes the set of all grounded instances of members of ∆.

Given (K, ∆), we need to define when a fact can be regarded as justified. A defeasible

derivation is defined as a derivation where some defeasible rules are used as material

implications for the application of modus ponens. Let Γ be a subset of K ∪ ∆
↓
. The

grounded literal h is a defeasible consequence of Γ, abbreviated Γ |∼ h, if and only if

there exists a Lnite sequence B1, . . . , Bn such that Bn = h and for 1 ≤ i < n, either

Bi ∈ Γ, or Bi is a direct consequence of the preceding elements in the sequence by virtue

of the application of modus ponens or particularization (grounding) of an universally

quantified sentence. Also, we will write K∪A |∼ h distinguishing the set A of defeasible

rules used in the derivation from the context K.

In first order logic the above definition is enough to describe the wffs that are theo-

rems, but we need to give a criterion that will allow us to prefer one conclusion to

another. We will now introduce the formal notion of argument.

Definition 2.1 Given a context K = KG ∪ KP , a set ∆ of defeasible rules, and

a literal h ∈ SentC(L), we say that a subset A of ∆
↓

is an argument structure for h in

the context K(denoted by 〈A, h〉K, or just 〈A, h〉) if and only if:

1) K ∪ A |∼ h,

2) K ∪ A 6|∼ ⊥ and

3) 6 ∃A′ ⊂ A, K ∪ A′ |∼ h.

A subargument of 〈A, h〉 isXan argument 〈S, j〉 such that S ⊆ A.

Example 2.1 Given (K, ∆), K = {d−−>b, d, f, l}, ∆ = {b ∧ c>−−h, f >−− c, l ∧
f >−−¬c}, we say that 〈{f >−− c, b ∧ c>−−h}, h〉 is an argument structure for h.

We will refer to the collections of all possible argument structures as AStruc(∆
↓
),

or just AStruc. The following definitions will characterize the relations of specificity,

disagreement, counterargumentation, and defeat on AStruc.

Definition 2.2 Let D = {a ∈ Lit(K ∪∆) : K ∪∆
↓ |∼ a}, where Lit(A) is the set of

literals in the wff A, and 〈A1, h1〉,〈A2, h2〉∈ AStruc. We say that A1 for h1 is strictly

more specific than A2 for h2 denoted 〈A1, h1〉 Âspec 〈A2, h2〉, if and only if:

i) ∀S ⊆ D if KG ∪ S ∪ A1|∼ h1 and KG ∪ S 6|∼ h1, then KG ∪ S ∪ A2|∼ h2.

ii) ∃S ⊆ D such that KG ∪ S ∪ A2|∼ h2 and KG ∪ S 6|∼ h2 and KG ∪ S ∪ A1 6|∼ h1.

Definition 2.3 Two argument structures 〈A1, h1〉 and 〈A2, h2〉 disagree, denoted

〈A1, h1〉 ./K 〈A2, h2〉, if and only if K ∪ {h1, h2} ` ⊥.

Definition 2.4 Given two argument structures 〈A1, h1〉 and 〈A2, h2〉, we say that

〈A1, h1〉 counterargues 〈A2, h2〉 in the literal h, denoted 〈A1, h1〉
h⊗→ 〈A2, h2〉, if and only

if there exists a subargument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉 ./K 〈A, h〉. 〈A, h〉
will be also called the disagreement subargument.

3

Definition 2.5 Given two argument structures 〈A1, h1〉 and 〈A2, h2〉, we say that

〈A1, h1〉 defeats 〈A2, h2〉 at literal h, denoted 〈A1, h1〉 Àdef
〈A2, h2〉, if and only if

there exists a subargument 〈A, h〉 of 〈A2, h2〉 such that: 〈A1, h1〉
h⊗→ 〈A2, h2〉 and

〈A1, h1〉Âspec〈A, h〉.
Example 2.2 Given (K, ∆) as defined in example 2.1, we have the following relations

between arguments.

〈{l ∧ f >−−¬c},¬c〉 ./K 〈{f >−− c}, c〉
〈{l ∧ f >−−¬c},¬c〉 c⊗→ 〈{f >−− c, b ∧ c>−−h}, h〉
〈{l ∧ f >−−¬c},¬c〉 Âspec〈{f >−− c}, c〉
〈{l ∧ f >−−¬c},¬c〉 À

def
〈{f >−− c, b ∧ c>−−h}, h〉

Definition 2.6 An argument 〈A, h〉 is active at various levels as supporting

(S-argument) or interfering argument (I-argument):

i. All arguments are (level 0) S-arguments and I-arguments.

ii. 〈A1, h1〉 is a (level n + 1) S-argument if and only if there is no level n I-argument

〈A2, h2〉 such that for some h, 〈A2, h2〉 counterargues 〈A1, h1〉 at h.

iii. 〈A1, h1〉 is a (level n + 1) I-argument if and only if there is no level n I-argument

〈A2, h2〉 such that 〈A2, h2〉 defeats 〈A1, h1〉.
Finally, we will say that an argument 〈A, h〉 is a justification for h if and only if

there exists m such that for all n ≥ m 〈A, h〉 is an S-argument of level n for h. It can be

shown that there is an effective procedure to decide whether 〈A, h〉 justifies h (Simari

& Loui, 1992).

3. KNOWLEDGE REPRESENTATION

The system maintains a knowledge base [K, ∆] and an Arguments Base IB(Garćıa,

Chesñevar & Simari, 1993). [K, ∆] is the computational counterpart of (K, ∆). IB stores

the justifications already built by the system. The elements of K are of two kinds:

strong rules (of the form literal1 ∧ literal2 ∧ . . . ∧ literaln−−> literal) 3 or particular

facts, corresponding to grounded literals. ∆ is a finite set of defeasible rules of the

form literal1 ∧ . . . ∧ literaln >−− literal. IB stores arguments already generated by the

system, along with information relating them to other members of IB.

The implementation of [K, ∆] involves also the definition of “ >−− ” (defeasible im-

plication), “−−> ” (material implication), “∧” (conjunction) and “¬” 4 (corresponds to

classic negation; the system assumes that ¬ ¬l = l).

Example 3.1 The following example (Poole, 1988) shows how knowledge can be re-

presented using this formalism. 5

3A literal is an atomic formula or an atomic formula negated. Atomic formulas are formulas of the
form p(t1, t2, . . . , tn), where p is the predicate name and t1, t2, . . . , tn are constants or variables.

4Presented as neg in (Simari & Loui, 1992)
5Predicates, variables and constants names follow the syntactic PROLOG convention.

4

Bats are mammals. bat(X) −−> mammal(X)

Bats normally fly. bat(X) >−− flies(X)

Mammals normally don’t fly. mammal(X) >−−¬ flies(X)

Dead bats normally don’t fly. bat(X) ∧ dead(X) >−−¬ flies(X)

Dracula is a bat. bat(dracula)

Dracula is dead. dead(dracula)

Since the knowledge base K is a subset of L, the inference engine must consider the

contraposition for material implication. When the strong rule a−−> b is introduced as

part of the agent’s knowledge, we are also meaning ¬b−−>¬a. In order to capture this

feature, every rule inK is implemented as a list of literals that represents its clausal form.

Thus, a strong rule l1∧ l2∧ . . .∧ lk−−>c is represented as [¬ l1,¬ l2, . . . ¬ lk, c]. Actually,

a clausal form [l1, l2, . . . ln] represents n strong rules with consequents l1, l2, . . . ln respec-

tively, where the associated antecedents to each li are the literals l1, . . . , li−1, li+1, . . . , ln

negated. This representation (Loveland, 1978; Poole, 1985b) captures the meaning of

contraposition allowing the inference engine to remain independent of the way rules

where added to K. It is important to remark that contraposition is not allowed for

defeasible rules.

In the search for a supporting argument for a grounded literal q, the system looks

first for an existing justification stored in IB. Should this search fail, the system will

attempt to build an argument for q from [K, ∆]. The system also allows the addition

of new facts (grounded literals) to the knowledge base K. This action activates the

Arguments Maintenance System (AMS) that scans the Arguments Base IB, eliminating

every argument incompatible with the new knowledge base. Then, the AMS builds those

new arguments the new fact has made possible. After comparing the new arguments

with the ones already stored in IB, the relation among them will be properly updated.

For a given query q, the system will answer:

- “unknown”, if no argument for q can be built from [K, ∆];

- “yes”, if there exists a justification for q;

- “no”, if every argument for q is defeated;

- “undefined”, if for every argument A for q there exists at least one non-defeated

counterargument that is not comparable for specificity with A.

4. THE ARGUMENT CONSTRUCTION PROCEDURE

Inference is defined in terms of inference trees (Lin & Shoham, 1989). Using this

notion it is possible to redefine the concepts of defeasible consequence and argument

structure in a computational oriented manner.

Definition 4.1 Let q be a goal. Then a Defeasible Inference Tree (DIT) for q is

defined as follows:

5

i) A particular fact q is a defeasible inference tree for the goal q.

ii) If T1, . . . , Tn are defeasible inference trees with roots l1, . . . , ln respectively, and l1 ∧
l2 . . . ∧ ln−−> q is a rule in K, such that q is not a node in any of the trees T1, . . . , Tn,

then the tree T with root q and T1 . . . Tn as immediate subtrees is a defeasible inference

tree for q. We say that T is built from T1, . . . , Tn using the strong rule l1 . . . ln−−> q.

iii) If T1, . . . , Tn are defeasible inference trees with roots l1, . . . , ln respectively, and

l1 ∧ l2 . . . ∧ ln >−− q is a rule in ∆
↓
, such that q is not a node in any of the trees

T1, . . . , Tn, then the tree T with root q and T1 . . . Tn as immediate subtrees is a defeasible

inference tree for q. We say that T is built from T1, . . . , Tn using the defeasible rule

l1 . . . ln >−− q.

The defeasible consequence meta-meta-relationship “|∼ ” (Simari & Loui, 1992) can

be defined in terms of defeasible inference trees: we will say that Γ |∼ q if there exists

a DIT for q built from the rules in Γ. If 〈A, h〉 is an argument structure for q, the set A

contains the defeasible rules of a DIT with root h. Thus, we can introduce the following

definition of argument in terms of a DIT.

Definition 4.2 Let T be a DIT for a literal h, and A the set of defeasible rules used

in the construction of T . We say that 〈A, h〉 is an argument structure for h if: (1)

K ∪ A 6|∼ ⊥ and (2) 6 ∃A′ ⊂ A, K ∪ A′ |∼ h .

The definition 4.2 gives a way to obtain an argument without building ∆
↓

as defi-

nition 2.1 requires. The system builds a DIT for a grounded literal q using backward

chaining, trying to unify q with some rule R from [K, ∆]. If this unification succeeds,

then the antecedents of R become new goals to be satisfied. Unification (Lloyd,1987)

is extended to consider defeasible rules. Once the DIT for q has been built, the set A

of defeasible rules used in it will be an argument for q (see definition 4.2) when verifies:

(1) K ∪ A 6|∼ ⊥ (consistency) and (2) 6 ∃A′ ⊂ A, K ∪ A′ |∼ h (minimality). Next

we will discuss briefly these two conditions and the pruning strategy used during the

construction of defeasible inference trees.

Let [K, ∆] be the knowledge base of an agent A, and let 〈A, h〉 be an argument

structure. We will say that 〈A, h〉 is consistent with respect to K, i.e., K ∪ A 6|∼ ⊥, if

and only if there is no P ∈ (K ∪ A)
` 6 such that K ∪ A|∼ P and K ∪ A|∼ ¬P .

Proposition 4.1 Let K be a consistent set and let 〈A, h〉 be an argument structure

for h and let l1 ∧ l2, . . . ln >−− c be a grounded instance of a defeasible rule in A. If

K 6` ¬c, then the rule l1∧ l2, . . . ln >−− c can be used to extend K with c in a consistent

way, i.e., K′ = K ∪ {c} is consistent. 2

The consistency of a DIT for h is checked applying a recursive procedure to each

subtree, starting from the leaves and ending in the subtree for h, i.e., the DIT itself.

The leaves of a DIT are facts belonging to a consistent K. Proposition 4.1 says that if

6R
`

represents the classic deductive closure of R.

6

we start with a consistent knowledge base K, then a defeasible rule l1, . . . ln >−− c can

be used as valid only if the consequent c can be assumed consistently, i.e., K 6` ¬c.

When K ` ¬c the rule must be discarded, and the current subtree must be rebuilt.

In this way verification is done only once for each rule and reconstruction is done only

when necessary.

Example 4.1 Let K = { penguin(X) −−> bird(X), penguin(petete), penguin(X)

−−> ¬flies(X) } and ∆ = { bird(X) >−− flies(X) } be a knowledge base. Then

〈 { bird(petete) >−− flies(petete) }, flies(petete) 〉 is not an argument structure for

flies(petete), since K ` ¬flies(petete).

Given a grounded literal q, the minimality condition in definition 4.2 is checked

by building all possible sets A1, A2, . . . , An of defeasible rules, such that for every Ai,

conditions 1 and 2 of the definition 4.2 hold. The system will discard those sets that

have the property of being supersets of any other. The remaining sets of defeasible

rules will be arguments for q.

The roots of the subtrees built during the construction of a DIT T for q are recorded

locally. Since a ground literal l could be the root of many subtrees of T , this pruning

strategy speeds up the construction of an argument A for q by building just one subtree.

5. JUSTIFICATIONS

The process of finding an argument for a ground literal h that results in a justifi-

cation is quite involved. For a given h, the system’s answer will be determined by the

posibility of obtaining a justification for h as follows: first, the system will try to build an

argument structure 〈A, h〉 for h from [K, ∆]. If such 〈A, h〉 exists, all counterarguments

and defeaters for 〈A, h〉 (if any) are generated. Since defeaters and counterarguments

are argument structures, they can have also other defeaters, which can have in turn de-

featers, and so on. If every counterargument and every defeater for 〈A, h〉 is defeated,

then the argument A for h becomes a justification for h. Nevertheless, if any of the

defeaters or counterarguments for 〈A, h〉 has not been defeated, then the system will

try to find another argument which justifies h.

We have formalized this situation in terms of activation levels for arguments (see

definition 2.6). It has been shown (Simari & Loui, 1992) that there exists a cut level

such that all the surviving arguments at that level will be active as S-arguments and

I-arguments at the next level. This fact guarantees the existence of an effective pro-

cedure for the computation of justifications since every S-arguments 〈A, h〉 active in

the cut level justifies h. Nevertheless, this procedure is computationally expensive. For

that reason, we will analyze the problem from an alternate point of view of defeasible

inference trees.

Definition 5.1 Let 〈A, h〉 be an argument structure. A defeaters tree for 〈A, h〉, de-

noted TD, is recursively defined as follows:

7

i. An argument structure 〈A, h〉 with no defeaters is a defeaters tree for 〈A, h〉 with

root 〈A, h〉.
ii. An argument structure 〈A, h〉 with defeaters 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An, hn〉 is a de-

featers tree with root 〈A, h〉 and its children nodes are the defeaters trees for 〈A1, h1〉,
〈A2, h2〉, . . . , 〈An, hn〉.

Definition 5.2 Let TD be a defeaters tree for an argument structure 〈A, h〉. Its nodes

can be labeled as follows:

i. Leaves of a TD are undefeated-nodes.

ii. An inner node (including the root) is:

-Defeated-node if and only if it has at least a child that is an undefeated-node.

-Undefeated-node if and only if all its children are defeated-nodes.

Definition 5.3 Let 〈A, h〉 be an argument structure for h. We say that TI is an

interference tree if TI is a defeaters tree for 〈A, h〉 and its root is an argument structure

〈S, r〉 that is a counterargument for 〈A, h〉 and it is labeled as undefeated-node.

Definition 5.4 Let 〈A, h〉 be an argument structure for h. We say that 〈A, h〉 is a

justification for h if there is no interference tree TI for 〈A, h〉.

From these definitions, when the system tries to justify h, there will be four possible

answers: “yes”, “unknown”, “no” and “undefined”. The answer will be “yes” if there

exists a justification for h. The system will answer “unknown” if there is no argument

structure 〈A, h〉. The answer will be “no” if every argument structure 〈A, h〉 has at

least one interference tree TI whose root 〈S, r〉 is a defeater for 〈A, h〉. Otherwise, the

answer will be “undefined”.

6. THE ARGUMENTS MAINTENANCE SYSTEM

The reason for introducing the Arguments Base IB is to save work already done

when looking for a justification. If no new facts are added to K, some queries could be

answered just by looking in IB without having to recurse to the inference mechanism.

On the other hand, it is desirable that a system modelling the behavior of an intelligent

agent will have the capability of internalizing new information dynamically. The system

provides this service, along with the capability of adding particular facts (grounded

literals) to the knowledge base K. The Arguments Base IB could be affected when

new facts are added to K: new argument structures could be generated and some

arguments in IB would become invalid. In order to keep the contents of IB updated,

the Arguments Maintenance System (AMS) will revise IB automatically every time a

new fact is introduced.

8

6.1. Invalidation of Arguments stored in IB

Adding consistently a particular fact f to K could render invalid some of the ar-

guments stored in IB. Looking at definition 2.1 we see that condition (1) will remain

valid no matter what we add to K. The situation with respect to the consistency and

minimality of the arguments is clearly different.

We will first analyze the consistency condition. Let K′ be the expansion of K
by f , i.e., K′ = K ∪ {f}. An argument A = {R1, R2, . . . , Rn} ∈ IB is consis-

tent with respect to K′ (that is, K′ ∪ A 6|∼ ⊥), if for every grounded defeasible rule

Ri = a1 ∧ a2 ∧ . . . ∧ ak >−− ci ∈ A holds K′ ∪ {R1, . . . , Ri−1} 6|∼ ¬ci for 1 ≤ i ≤ n. If A

is consistent with K′, then A remains in IB, otherwise it is discarded.

Let 〈A, h〉 be an argument structure. Minimality of 〈A, h〉 could be violated when

the new fact allows the construction of a new argument A′ for h such that A′ ⊂ A.

If no consequent c of any defeasible rule Ri in A is such that K ∪ {f} ` c, then A

remains minimal. On the other hand, if K ∪ {f} ` c for some rule Ri in A, then Ri

is a redundant rule in A, and can be eliminated. After eliminating all redundant rules

from A, a minimal argument A′ is obtained. Finally, A will be replaced by A′ in IB.

6.2. Generating new arguments

We also need to update IB when the addition of a new fact allows the construction of

new arguments. Let K′ = K ∪ {f} be the expanded knowledge base by the addition of

f . In order to generate the new argument structures, the AMS uses a combined method

of forward–chaining along with the defeasible inference backward–chaining mechanism.

The method used for updating IB is the following: the addition of a new fact f 7 to K
could permit the firing of some rule R (weak or strong) that could not be fired from

K alone. The rule R will be fired if f unifies with one of the literals in the antecedent

of R, and the remaining literals have a DIT (obtained by backward-chaining). Thus,

the AMS obtains a new argument structure 〈A, h〉, where h is the consequent of R.

The literal h could also unify with some other literal in the antecedent of another rule

R′. Then, a new argument for the consequent of R′ can be obtained. The process will

continue until all new arguments the new fact has made possible have been generated.

Example 6.1 Consider the following knowledge base:

K = { bird(petete), penguin(X)−−>¬flies(X) }

∆ = { bird(X) >−− flies(X),

penguin(X) >−− swims(X),

bird(X) >−− lives on land(X),

lives on land(X) ∧ swims(X) >−− lives near water(X) }
and an Arguments Base IB containing

7With “new fact f”, we mean “a grounded literal f such that K 6` f”

9

〈{bird(petete) >−− flies(petete)}, f lies(petete)〉
〈{bird(petete) >−− lives on land(petete)}, lives on land(petete)〉

After adding the fact penguin(petete) to K, the following steps are taken:

1. The argument 〈{bird(petete) >−− flies(petete)}, f lies(petete)〉 becomes invalid,

since flies(petete) is no longer consistent with the knowledge base K.

2. The rule penguin(X) >−− swims(X) is used to build the argument 〈 {
penguin(petete) >−− swims(petete) }, swims(petete) 〉, and swims(petete) be-

comes a new fact to be considered in the forward–chaining process.

3. The fact swims(petete) unifies with one literal in the an-

tecedent of the rule lives on land(X) ∧ swims(X) >−− lives near water(X).

Since lives on land(petete) has a DIT, this rule will be fired, allowing

the generation of the argument 〈 { penguin(petete) >−− swims(petete),

bird(petete) >−− lives on land(petete), lives on land(petete) ∧ swims(petete)

>−− lives near water(petete) }, lives near water(petete) 〉.

Let N = {〈N1, h1〉, . . . , 〈Nk, hk〉} be the set of the newly formed argument structures

created after the addition of f to K. For each Ni in N , the AMS will find out if Ni

counterargues any member 〈A, h〉 in IB. The appropriate action will be taken, updating

the information associated to 〈A, h〉 and Ni.

There are two special cases in which the addition of f to K does not affect IB. These

are: (i) f is an instance of a literal where the combination of the predicate letter and

arity does not appear among the literals of K ∪ ∆, and (ii) f is an instance of a literal

such that K ` f .

7. CONCLUSIONS

The way from a solid theoretical foundation to efficient argument based systems

promises to be full of interesting aspects. We have introduced some conceptualizations

in terms of trees (inference trees, defeaters trees, etc.) obtaining an easier way of speci-

fying our algorithms. The updating of an Arguments Base after the addition of a new

fact to the knowledge base is the first step in the direction of a system that would allow

to update the knowledge base (facts and strong rules) and the set of defeasible (weak)

rules. Finally, Argument Based Systems show the possibility of developing Knowledge

Based Systems beyond Rule Based Systems.

8. REFERENCES

Garćıa, A.J., Chesñevar,C.I. and Simari,G.R., 1993, Bases de argumentos: su manteni-
miento y revisión, in XIX Conferencia Latinoamericana de Informática, 22as. Jornadas
Argentinas de Informática e Investigación Operativa.

10

Lloyd,G., 1987, Foundations of Logic Programming, Springer-Verlag, 2nd. Edition.

Loveland,D., 1978, Automated Theorem Proving: A Logical Basis, North Holland.

McCarthy,J.,1980, Circunscription – A form of non-monotonic reasoning, Artificial Intelli-
gence 13: 27–39.

McDermott,D. and Doyle,J., 1980, Non-monotonic logic I, Artificial Intelligence, 13: 41–72.

Lin,F. and Shoham,Y.,1989, Argument systems: a uniform basis for nonmonotonic reason-
ing, STAN-CS-89-1243, Stanford University, Department of Computer Science.

Moore,R.C.,1985, Semantical considerations on nonmonotonic logic, in Artificial Intelli-
gence, 25:(1) 75–94.

Pollock,J.L., 1987, Defeasible reasoning, in Cognitive Science, 11:481–518.

Poole,D.L., 1985a, On the comparison of theories: preferring the most specific explanation,
in Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
pp. 144–147, IJCAI.

Poole,D.L., Aleliunas,R. and Goebel,R., 1985b, THEORIST: A logical reasoning system for
defaults and diagnosis, Technical Report, Departament of Computer Science, University
of Waterloo, Waterloo, Canada.

Poole,D.L., 1988, A logical framework for default reasoning, in Artificial Intelligence 36,
pp. 27–47.

Prakken,H.,1993, Logical Tools for Modelling Legal Arguments, PhD Thesis, Vrije Univer-
sity, Amsterdam, Holland.

Reiter,R., 1980, A logic for default reasoning, in Artificial Intelligence, 13: 81–132.

Simari,G.R., and Loui,R.P., 1992, A mathematical treatment of defeasible reasoning and
its implementation, in Artificial Intelligence, 53: 125–157.

Vreeswijk,G.,1991, The Feasibility of Defeat in Defeasible Reasoning, in Knowledge Repre-
sentation ’91.

11

