Compilation Techniques for
Defeasible Logic Programs

A. G. Stankevicius* A. J. Garcial G. R. Simari

Grupo de Investigacién en Inteligencia Artificial (GIIA)
Departamento de Ciencias de la Computacion
Universidad Nacional del Sur
Bahia Blanca - Buenos Aires - ARGENTINA

e-mail: {ags,ajg,grs}@cs.uns.edu.ar

Abstract

Defeasible logic programming is a newly developed extension to conventional
logic programming that captures some aspects of common-sense reasoning hard to
model within the classical approach. Particularly,defeasible logic programs (DLP)
are expressive enough to represent incomplete and potentially contradictory infor-
mation, applying ideas from defeasible argumentation in order to decide between
conflicting goals.

Nowadays, several architectures designed for executing DLPs are based on ab-
stract machines; the compiler plays a key role in these architectures. Structural
simplicity and good maintainability are valuable properties in compilers for recently
developed languages like defeasible logic programming.

Predictive recursive compilers grant these desired properties. However, the
translation of DLPs into instructions of the abstract machine is rather difficult
in this setting, particularly when parsing terms and lists. In this paper, we propose
some compilation techniques that deal with these problems, field-tested in a DLP
compiler entirely written in Java.

Keywords: defeasible logic programming, logic program compilation.

1 Introduction

Whenever we attempt to use logic programming as a modeling tool for common-sense
reasoning, we will realize, eventually, that the classical approach lacks some essential
features required for the enterprise [5, 10]. This prompts the development of extensions
to conventional logic programming that successfully address these inconveniences. De-
feasible logic programming [4] is one of these newly developed extensions; it captures
aspects of common-sense reasoning hard to model within the classical approach. Par-
ticularly,defeasible logic programs (DLPs) are expressive enough to represent incomplete

*Supported by a fellowship of Secretaria General de Ciencia y Tecnologia, UNS.
tPartially supported by Fundacién OSDIC.

and potentially contradictory information, applying ideas from defeasible argumentation
in order to decide between conflicting goals [12].

Nowadays, several architectures designed for executing DLPs are based on abstract
machines [4, 7, 11, 13] (like the majority of the systems for executing Prolog programs).
As emphasized in [11], the compiler plays a key role in these architectures. Note that
when implementing compilers for recently developed languages (e.g., defeasible logic pro-
gramming), developers seek structural simplicity and good maintainability, given that
new ideas need be prototyped and tested constantly. For example, almost every Prolog
compiler that exploits parallelism, are entirely written in Prolog [3].

Predictive recursive compilers [2] grant these desired properties. Unfortunately, the
translation of DLP terms and lists into instructions of the abstract machine is rather
difficult for a top-down compiler. Other compilers (e.g., bottom-up) do not suffer this
drawback, but they tend to be complex in structure and not so easy to maintain. The
reader might notice that predictive recursive compilers cannot deal with dynamic op-
erators (a powerful resource available in Prolog). Not withstanding, defeasible logic
programming is not Prolog, and does not have dynamic operators, thus predictive re-
cursive compilers are still applicable.

Naturally, writing the compiler entirely in Prolog gives us excellent modularity and
maintainability. Moreover, with the expressive power of Prolog it is easy to deal success-
fully with the problems arising in term and list compilation. Despite of this, a compiler
of this kind would be severely constrained in the size of the input allowed, and also in the
efficiency of the translation process. Following [9], we decided to take a step towards an
efficient translation without neglecting the other properties. In this trade-off, a good bal-
ance of efficiency versus maintainability can be achieved adopting a predictive recursive
compiler.

The classical approach for compiling Prolog terms resorts to find one of its flattened
forms [1]. However, this method cannot be directly applied to predictive recursive compil-
ers. In this paper, we propose some compilation techniques for dealing with the problems
that arise in the translation of DLPs in that type of compiler. These techniques were
field-tested in a DLP compiler, entirely written in Java, that comprises an integral part
of the visualization system reported in [13].

This paper is organized as follows: in the next section, we discuss the essentials of
defeasible logic programming from point of view of the compiler. Section 3 overviews
the compiler where we developed the compilation techniques. In section 4, we begin
by reviewing the standard approach to term compilation, and we also define the new
techniques. We conclude section 4 addressing the compilation of lists, a special type of
term. Finally, section 5 summarizes our conclusions.

2 Defeasible Logic Programming

In what follows, we discuss the essentials of defeasible logic programming from point of
view of the compiler. For a more comprehensive analysis we refer the interested reader
to its original definition [4].

In the language of defeasible logic programming, a term is either a wvariable (de-
noted by an uppercase initial), a constant (denoted by a lowercase initial), or a structure
f(t1,...,t,), where f is a functor (with the same restrictions as for constants) and the
t; are terms (also known as subterms). For each functor, the number of subterms is fixed

and is called arity. Considering that the same functor could be associated with several
arities we adopt the standard convention of denoting a functor f of arity n as f/n.

An atomic predicate is an expression of the form p(ty,...,t,), n > 0, where p is
a predicate name (with the same restrictions as for constants) and the ¢; are terms
(also known as predicate parameters). Once again, we call the amount of parameters in
predicate p its arity. We adopt the same convention as before when denoting predicate
arity. A literal [is either an atomic predicate p, or its negation ~p. Note that the symbol
“~” denotes strong negation, not to be confused with the usual negation in conventional

“not”.

logic programming (negation as failure), denoted in this language as

Finally, a defeasible logic program (DLP) is a finite set of strict rules and defeasible
rules. A strict rule is a rule of the form “l < pq,...,p,”, n > 0, where [is a literal,
and each p; is either a literal or the symbol “not” of negation as failure followed by a
literal. If n = 0, we say that [is a fact, denoted “l «+ true”. Likewise, a defeasible rule
is a rule of the form “I — pq,...,p,”, n > 0, with the same considerations for [and the
p; as before. In this case, if n = 0 we say that [is a presumption, denoted “l — true”.
The symbol “—=" distinguishes defeasible from strict rules. This distinction is important
because strict rules represent undisputed information, while in contrast, defeasible rules
represent tentative information that can be used until its validity is questioned. For this
reason, every DLP contains two disjoint set of rules: one that models strict knowledge,
and the other that models defeasible knowledge.

For every rule in a DLP, the consequent [is called head, and the antecedent py, ..., p,
7 are called neck.

« 2

is called body. Following this terminology, the symbols “—” and “—<
Finally, a rule without head is called query.

Example 2.1. A DLP concerning the popular tweety.

fly(X) -< bird(X). penguin(pengo) <- true.
~fly(X) -< 111(X). bird(tweety) <- true.
~fly(X) <- penguin(X). bird(fred) -< true.
bird(X) <- penguin(X). i11(fred) -< true.

Recall that we are focusing our attention on the point of view of the compiler. There-
fore, we do not address the “higher level” notions of argument, defeat and justification
that have been explored elsewhere [8].

3 Compiler overview

In this section we overview the compiler used as test-bed for demonstrating the pro-
posed compilation techniques. This compiler is one of the key components of the system
reported in [13]. It takes a DLP and translates it into instructions of an abstract ma-
chine that was specifically developed for defeasible logic programming. The abstract
machine, called Justification Abstract Machine (JAM) [4, 7], is an extension of another
well-known abstract machine defined for Prolog execution, devised by D. Warren and
nowadays known as Warren’s Abstract Machine (WAM) [14, 1].

In what follows, we detail the compilation phases, giving a brief introduction to the
abstract machine used as target of the compilation process.

program — clause program | EOF
clause — head neck body . | head .
head — 1literal
literal — atom | “atom
atom — functor parameter-list
functor — lower-id
parameter-list — (term-list) | €
term-list — term , term-list | term
term — number | atom | list
variable — upper-id | anon-id
list — variable | [term-list | list] | [term-list] | []
neck — - | <= | <
body — query-list
query-list — query , query-list | query
query — ! | literal | not literal

Figure 1: Preprocessor initial grammar.

3.1 Compilation phases

The compiler is grounded on a well established type of top-down parser, namely predictive
recursive parsers [2]. Note that there are several tough tasks that should be performed
by any DLP compiler besides the translation itself. Among others, the generation of
inverted rules [6, 4] is demanding. For this reason, we decided to split the compiler
work in two compilation phases: the preprocessing phase, and the translation phase.
Initially, the DLP to be compiled is fed into the preprocessor. In turn, its output is fed
to the translator obtaining as a result the original program expressed in terms of JAM
instructions. Given that every rule is independent from each other by definition, the task
of translating DLPs can be reduced to the task of translating a single rule.

Every predictive recursive parser is built on top of a predictive recursive grammar.
Figure 1 shows the initial grammar used as the source language (i.e., the language ac-
cepted by the preprocessor). Recall that the final grammar should be factorized, and left
recursion should be eliminated before trying to apply this parser-construction method.
The resulting grammar is portrayed in Figure 2.

It may seem strange to consider variables —denoted in Figure 2 by the terminal sym-
bols upper-id and anon-id— as lists instead of as terms. We have chosen this grammar
because it solves the dilemma faced by the compiler when dealing with alternative repre-
sentations for lists. For example, both [a] and [al [1] denote the same list, namely the
one containing only the constant a. We shed more light on this matter in section 4.2.

Note that the language accepted by the parser of the translator differs from the lan-
guage of defeasible logic programming. For instance, the preprocessor generates inverted
rules that are not allowed as rules of any DLP. The translator’s grammar is discussed in
section 4.1.

3.2 Justification abstract machine (JAM)

As stated before, the compiler translates DLPs into JAM instructions. In order to gain
a deeper understanding of the translation process, we introduce in what follows the basic
concepts of the abstract machine.

In a DLP, every rule can be considered as a set of queries (its body) that when

program — clause program | EOF
clause — 1literal clause’
clause’ — neck query-list . |
literal — atom | “atom
atom — lower-id parameter-list
parameter-list — (term-list) | €
term-list — term term-list’
term-list’ — , term-list | €
term — number | atom | list
list — upper-id | anon-id | [term list’] | []
list’ — , term list’ | | list | €
neck — - | <= | =<
query-list — query query-list’
query-list’ — , query-list | e
query — ! | literal | not literal

Figure 2: Preprocessor predictive recursive grammar

satisfied entails a new fact (its head). This particular view allows the whole treatment of
the abstract machine in terms of facts and queries. The execution of JAM code always
starts with a query. Thereafter, some rule such that its head matches with a goal in the
current query is selected. Next then, that goal is removed from the current query (it has
been met), and the body of the selected clause is added to the current query. Finally,
the process starts all over again, this time with the new query.

JAM'’s memory architecture is simple: it contains several separate regions, and a set
of special registers associated with each of them (see Figure 3). The CODE region keeps
the code of the compiled rules of the program. The HEAP is a stack that stores all the
structures created throughout execution (particularly in the unification). The STACK
is also a stack that stores two types of objects: environments (where the information local
to each rule is stored), and choice-points (where backtracking information is stored). The
T-HEAP (temporary heap) is analogous to the HEAP, but for keeping the so-called
temporary facts [7]. The next region, the LINE, stores the current argumentation line.
These last two regions are not present in the WAM, as they deal with certain aspects of
the argumentation process not present in Prolog. Finally, the TRAIL stores references
to variables binded during unification that should be unbinded if a backtrack is performed.

The abstract machine also has two types of registers: parameter registers, and term
registers. The parameter registers are used to inform the head of the rule selected for
unification about the location of the parameters belonging to a certain goal present in
the current query (i.e, implementing the parameter passing). The term registers are used
in the construction of the term representation inside the HEAP. Our particular usage
of term register is explained in the next section.

low memory high memory
CODE \ HEAP \ STACK \ T-HEAP \ LINE \ TRAIL

T 7 T 1 N | 7 7 T

P CP H HB S E B BO T L TR

Figure 3: Abstract machine’s memory architecture.

4 Compilation techniques

In this section we define the proposed compilation techniques. We start by reviewing
term compilation, and in the sequel the compilation of a special type of term, the lists.

4.1 Term compilation

The terms of each rule can be compiled independently from the rest. For this compiler, we

have elaborated from the intuitions behind the compiler reported in [6], namely, we use

a temporary symbol table for storing the partial translation of the rule being compiled.
Each entry in the temporary symbol table contains the following fields!:

1. Goal Position: keeps the position of the current goal in the rule. It is used to
distinguish permanent from temporary variables.

2. Identifier: stores the name associated with the current entry.

3. Arity: only meaningful when the current identifier is a predicate or a structure.

4. Type: describes the kind of identifier stored (e.g., variable, constant, etc.)

5. Opcode: JAM instruction associated with this entry.

6. Opcode Parameters: only meaningful when the stored opcode has parameters.

7. Parameter Register Reservoir: holds the parameter register assigned to the
opcode.

8. Term Register Reservoir: holds the term register assigned to the opcode.

As stated before, the memory region HEAP holds every term that appears in a DLP.
Each of the HEAP cells contains a pair (type, content), where type describes what is
stored in content. The valid types are: reference, constant, structure, and list. Let us
analyze in detail the representation of each type of term.

A variable can be either binded to a term, or unbinded. Hence, a variable is repre-
sented by the pair (reference, address), where address is in turn the pair (region, off set)
that denotes the location of the term binded to it. We assume the convention that self
reference denotes an unbinded variable. Constants are easily represented by the pair
(constant,token), where token is the actual constant. Finally, a structure of the form
f(t1,...,t,) is represented by the pair (structure, address), where address is in turn the
pair (region,offset). This pair denotes the location of the pair (constant, f/n) and the
following n cells are the representation of its n subterms.

Example 4.1. Assuming the offset n as a starting address in the HEAP, we can repre-
sent the term f(s(X), X) —actually located at n 4+ 4— in the following way:

n reference (HEAP,n) X
n+1 | structure | (HEAP,n + 2) s(
n+2 | constant s/1 :
n+ 3 | reference (HEAP,n) X)
n+4 | structure | (HEAP,n +5) f(
n+5 | constant f/2 :
n+6 | reference (HEAP,n) X’
n+7 | structure | (HEAP, n + 2) (X))

La deeper analysis can be found in [4, 13].

location | 1Y occur. | in struct. | WAM & JAM opcodes

body yes yes put_variable Vn Ai
body yes no set_variable Vn
body no yes put_value Vn Ai
body no no set_value Vn
head yes yes get_variable Vn Ai
head yes no unify variable Vn
head no yes get_value Vn Ai
head no no unify value Vn

Table 1: WAM and JAM instructions for variables.

The JAM, as a WAM extension, has a larger set of instructions. However, the
instructions for handling terms coincide in both abstract machines. Clearly, a term can
occur either in the head, or in the body of a rule; different WAM (JAM) instructions are
used in each case. Moreover, there are different instruction for each type of term. In what
follows, we describe how the compiler generates the proper instructions for constants,
variables, and structures.

There are several factors that determine which is the right instruction to output when
translating a variable: whether it is the first occurrence, whether it appears in the head or
in the body of a rule, etc. Table 1 summarizes the different alternatives. The compilation
of constants is easier, only four instructions are involved; the right one is chosen according
to Table 2.

When it comes to compiling structures, the hidden complexity of this task arises. We
will follow the approach of H. At-Kaci [1]. First, let us consider the compilation of terms
in the rule body, and next the compilation of terms in the rule head.

The code in the rule body is responsible for constructing the representation of its terms
in the HEAP, in such a way that the code of any selected rule head would find those
terms, in order to perform the expected unification. As discussed before, a structure f/n
is represented with at least n + 2 cells (note that some subterms may also be structures).
In Example 4.1, the subterms are built in the HEAP before the term f/n itself. In
other words, the representation of every subterm must already be in the HEAP before
considering the term.

Let us describe how term registers are used during the construction of the repre-
sentation of terms. Each component of the term being compiled is associated with
one term register. The assignments, for example, in the term f(X,g(X,Y),Y) are
X; = f(Xo, X3, Xy), Xo = X, X3 = g(Xs,Xy), and Xy = Y. Accordingly, any term
can be understood as a sequence of equations of the form X; = d, for constants and

location | in struct. | WAM & JAM opcodes
body yes put_constant c Ai
body no set_constant ¢
head yes get_constant c Ai
head no unify constant c

Table 2: WAM and JAM instructions for constants.

variables, or X; = f(X,,,...,X;,) for structures. This is usually called flattened form of
terms [1].

The flattened form of terms is closer to what we need, but not every term in its
flattened form is suitable. We only accept sequences of equations such that no term
register is referred prior to its definition (i.e., every term register appears on the right
side of an equation if and only if it has appeared on the left side of a previous equation).
This is what we call flattened form of a term in the rule body (FFB for short). For
the previous term, its FFBis Xo = X, Xy =Y, X3 = g(X3, Xy), and X; = f(Xs, X3, Xy).
Since every rule in a defeasible logic program is universally closured, the particular name
of each variable is irrelevant. Thus, we can denote each variable by its associated term
register. In the last example, X5 denotes X, and X, denotes Y. The resulting sequence
of equations (ignoring particular names) is X3 = g(Xs, X4), and X; = f(Xs, X3, X4).

Having obtained this sequence of equations, the desired set of instructions that builds
the term representation in the HEAP is exactly the set of instructions obtained from the
translation of each subterm found in a simple left to right scan of the FFB. The general
idea for compiling a term is that each subterm is associated with a new entry in the
temporary symbol table, and thereafter a linear scan of the table generates the required
translation. There still is a pitfall to be avoided: the flattened form obtained in this way
may not be valid.

It is easy to see why we cannot blindly apply this method in the context of a predictive
recursive compiler: the flattened form obtained in the compiler’s parse through the term
need not be acceptable. For example, consider the term f(g(X)); its corresponding
sequence of equations (once again, ignoring particular names) is X; = f(X3), and X, =
g(X3). This sequence is not an FFB: X} is referred prior to its definition. Other compilers,
such as those entirely written in Prolog, solve this problem considering the whole term
before constructing its flattened form (i.e., considering terms as terminal symbols in
their grammar). Our solution to this inconvenience is natural: rearrange the entries in
the temporary symbol table in such a way that the resulting flattened form becomes
acceptable (i.e., the flattened form is always an FFB).

Figures 1 and 2 depicted the grammar accepted by the preprocessor. In order to
describe the term compilation technique, we need to introduce the translator’s grammar
(compiler’s second phase). Figure 4 shows the initial grammar. Recall that we need to
factorize, and to eliminate the left recursion from the initial grammar. The grammar
obtained is portrayed in Figure 5.

In the first place, we address the compilation of terms that are subterms in another
term (i.e., they appear inside some structure). In the grammar, it is clear that any
subterm can inheritate the position in the table of the outer functor, as well as its current
arity (i.e., the position, inside the term, of the subterm being considered). We denote
with parent the position in the table of the outer functor, current_arity the current
arity, and arity the actual arity. The term translation will be stored between the table
positions parent and parent + arity.

In this setting, the translation of a constant is simple. The compiler initially places
that translation at the end of table. In order to put it in the right position, we need to
move the last entry to the position parent 4+ current_arity. The translation of variables
can be done in a like manner: the compiler initially places the translation of the variable
according to Table 1 at the end of the table. Then, this last entry is moved to its appro-
priate position (parent + current_arity). Recall that different instructions are generated
depending on whether it is the first occurrence of a variable or not. Considering this, we

program — clause program | EOF
clause — head neck body consistency-check . | head .
head — 1literal
literal — atom | “atom
atom — functor parameter-list
functor — lower-id
parameter-list — (term-list) | €
term-list — term , term-list | term
term — number | atom | list
variable — upper-id | anon-id
list — variable | [term | list] | []
neck — - | <= | < | @-
body — query-list
query-list — query , query-list | query
query — ! | literal | not literal
—

consistency-check # literal | ¢

Figure 4: Translator’s initial grammar.

have to be careful when moving that entry: an occurrence that is not the first may become
the first after the rearrangement (rendering invalid the translation of both occurrences).
With the help of a little trick, we avoid altogether the problematic situation imposing
that the first appearance of any variable cannot occur inside a structure. We achieve this
by creating a ghost occurrence of any variable such that its first appearance occurs inside
a structure just before the term in which it is contained. The ghost occurrence should
be placed in the position parent — 1 with the opcode set_variable Xi (i.e., the opcode
for a variable in the rule body appearing for the first time). After this, the occurrence
inside the structure is compiled as always (it is no longer the first occurrence).

The compilation of a structure inside another structure is more subtle. Note that the
translation of the inner structure may span over more than one entry, and therefore the
outer structure will span over more than what we expected. We avoid this problem re-
coursing once again to term registers. For example, the term f(g(X)) need be understood

program — clause program | EOF
clause — 1literal clause’
clause’ — neck query-list consistency-check . |
literal — atom | “atom
atom — lower-id parameter-list
parameter-list — (term-list) | ¢
term-list — term term-list’
term-list’ — , term-list | €
term — number | atom | list
list — upper-id | anon-id | [term | list] | []
neck — - | <= | < | @-
query-list — query query-list’
query-list’ — , query-list |
query — ! | literal | not literal
—

consistency-check # literal | e

Figure 5: Translator’s predictive recursive grammar.

as X; = g(X) plus f(X;). This can be easily accomplished by compiling any structure
inside another structure ignoring the outer structure. The temporary symbol table will
end up with a partially compiled structure in the middle (the outer structure), and a com-
pletely compiled structure in the bottom (the inner structure). At this point, we complete
the compilation of the outer structure by adding a reference to the completely compiled
structure. This seems somewhat messy, but in fact it is quite straightforward: just place
the reference to the completely compiled structure (i.e., the term register holding that
structure) in the position parent + current_arity.

At the end of the term translation, some housekeeping is required: after compiling
every subterm of a structure, the translation of its subterms are located below the trans-
lation of the term itself (violating the FFB). Moving the range (parent, parent + arity)
to the bottom of the temporary symbol table restores the acceptability of the flattened
form.

Briefly stated, the whole process of compiling a subterm occurring inside a structure
encompasses the following tasks:

e [f the subterm is a constant, its translation should be placed in the position parent+
current_arity of the temporal symbol table.

e [f the subterm is a variable, its translation should be placed in the position parent+
current_arity of the temporal symbol table, taking care of the problematic situation
where this occurrence is the first and appears inside another structure.

e If the subterm is a structure, its translation should be placed at the bottom of the
temporal symbol table. Thereafter, a reference to that translation should be placed
—before the housekeeping— in the position parent + current_arity.

We have discussed how to compile terms inside a structure. The compilation of
terms that appears as predicate parameters (i.e., they are not subterms of any term) is
remarkably easy: constants and variables are simply compiled according to their tables,
and for any structure, we consider the predicate in which it is contained as an outer
structure, and simply follow the same technique as before (the similarity is prominent,
see Figure 5).

The compilation of terms in the rule head resembles the previous case. Note, however,
that some query code is always executed before the rule head code. Considering this,
the execution of the query code may leave in the HEAP either a term, or an unbinded
variable. For this reason, the code associated with the rule head should admit two working
modes: a read mode that is used to unify the rule head with the terms in the HEAP,
and a write mode that is used to construct the term that the unbinded variable will refer
to. In any case, the code associated with the rule head has to perform the expected
unification.

The code associated with a term in the rule body needs to construct its representation
in the HEAP. On the contrary, the code associated with a term in the rule head does
not. (In a certain way, a tentative representation of that term is already present in the
HEAP.) We define the flattened form of term in the rule head (FFH for short)
in a way analogous to the FFB. A flattened form of a term is an FFH if and only if
its corresponding sequence of equations is such that no term register is referred after its
definition (i.e., a term register appears on the left side of an equation if and only if that
term register does not appears on the right side of any previous equation). For the term

f(X,9(X,Y),Y), its FFH is X; = f(Xy, X3, Xy), X3 = g(Xo, Xy), Xo = X, and Xy =Y.
Applying the same ideas, from this particular kind of flattened form we can obtain the
corresponding translation.

4.2 List compilation

The list is a special kind of term. We have reviewed how to compile a general term,
therefore, in some way, we already know how to compile lists. The main difficulty is
that, unlike the regular terms, the same semantic object can be represented by several
syntactic objects.

Consider the following rule that captures the usual syntax for lists:

list — [term-list | 1list] | [term-list] | [

Even though defeasible logic programming is type free, the compiler performs certain
type checking on lists. For instance, according to the previous grammar, any sound
compiler should reject the term [ala]l on the basis that the object appearing after the
vertical slash is neither a list, nor the constant [J.

Given that the compiler already has a preprocessor, we can get rid of these ambiguities
in the preprocessing phase, and only deal with the canonical form of lists throughout the
translation phase. We say that a list is in its canonical form if it is described by the
following rule:

list — [term | list] | []

For example, the canonical form for [1,2,3] is [11[21[31[1]1]1. Let us discuss our
approach for converting any list to its canonical form. Recall the following rules from the
grammar in Figure 2:

list — upper-id | anon-id | [term list’] | []
list’ — , term list’ | | list | €

This grammar is not the usual way of expressing general lists. Despite of this, the
language accepted by this grammar is the same language accepted by the previous (and
more familiar) grammar. Assume that emit() is a procedure that outputs its parameter
to the temporary storage, later used as input for the translator. The conversion is made
according to the following syntax-directed definition:

Syntactic Rules Semantic Rules
list — upper-id emit (upper-id.lexeme)
list — anon-id emit(’_’)

list — [term list’] emit(’ [?) ;parse(term);emit(’|’);
parse(list’);emit(’°]1?)

list — [] emit(’ [17)
list’ — , term list’ emit(’ [?) ;parse(term);emit(’|’);
parse(list’);emit(’]’)
list’ — | list parse(list)
list’ — € emit (’ [17)

Those alternative representations will not reach the translator; it will deal only with
canonical lists. If we understand brackets as parenthesis and vertical slashes as commas,
canonical lists have the form of a structure with an empty-name functor. In the litera-
ture, the implicit functor is usually denoted with a dot. For instance, the canonical list
[(11[21[31[11]1] can be understood as the term . (1,.(2,.(3,[1))). Under this interpre-
tation, we know how to compile lists, given that the name of the implicit functor is always
the same (to allow the correct unifications among lists), and that the implicit functor is
not a valid functor (to avoid the incorrect unification among lists and structures).

Nevertheless, it is possible to compile lists in a more efficient way. There are special
instructions defined for lists in JAM that avoid wasting HEAP space storing that (use-
less) implicit functor. The lists compilation is done following the procedure described for
general terms, but using list instructions instead of term instructions. A list is represented
in the HEAP by the cell (list, address), where address is the pair (region, offset) that
denotes the location of the two cells that contain the translation of the subterms of the
list. Contrast this representation against the representation defined for structures. Note
that this representation is compact and no cell is wasted with the empty-name functor.

Example 4.2. Assuming the offset n as a starting address in the HEAP, we can repre-
sent the list [al [bl [c]|[1]1]] —actually located at n + 4— in the following way:

n constant c/0
n+1 | constant [1/0
n+2 | constant b/0
n+3 list (HEAP,n)
n+4 | constant a/0
n+5 list (HEAP,n +2)

5 Conclusions

Defeasible logic programming has reached the stage of development where compiler effi-
ciency begins to weight. However, maintainability is also a desirable property for DLP
compilers. An interesting trade-off between these factors is achieved with predictive re-
cursive compilers, but, in these compilers, term compilation becomes challenging. In
this paper, we have proposed a technique for compiling terms that solves the difficulties
encountered in this setting.

We have also defined a simple way of dealing with the ambiguities in list representa-
tion, applicable to any compiler with some sort of preprocessing phase. These techniques
could be adapted to almost any recently develop logic programming extension (as long
as it does not involve dynamic operators).

References

[1] At-Kaci, H. Warren’s Abstract Machine, a tutorial reconstruction. MIT Press,
1991.

[2] Aho, A., Sethi, R., and Ullman, J. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986.

[12]

[13]

Carlsson, M. A Prolog Compiler and its Extension for OR-Parallelism. Technical
Report R90-06, Swedish Institute of Computer Science, 1990.

Garcia, A. J. La Programacion en Légica Rebatible: su definicién tedrica y com-
putacional. Master’s thesis, Departamento de Ciencias de la Computacién, Univer-
sidad Nacional del Sur, Bahia Blanca, Argentina, June 1997.

Gelfond, M., and Lifschitz, V. Logic Programs with Classical Negation. In Pro-
ceedings of the 7th International Conference on Logic Programming (1990), D. H. D.
Warren and P. Szeredi, Eds., pp. 579-597.

Garcia, A. J., and Simari, G. R. Un compilador para la programacién en
l6gica rebatible. In Proceedings of the III Congreso Argentino de Ciencias de la
Computacion (La Plata, Argentina, October 1997), Universidad Nacional de La
Plata, pp. 1279-1297.

Garcia, A. J., and Simari, G. R. Una extensién de la maquina abstracta de War-
ren para la argumentacién rebatible. In Proceedings of the III Congreso Argentino
de Cliencias de la Computacion (La Plata, Argentina, October 1997), Universidad
Nacional de La Plata, pp. 1201-1220.

Garcia, A. J., Simari, G. R., and Chesnevar, C. I. An Argumentative Frame-
work for Reasoning with Inconsistent and Incomplete Information. In Proceedings of
the Workshop on Practical Reasoning and Rationality (Brighton, United Kingdom,
August 1998), 13th European Conference on Artificial Intelligence, pp. 13-19.

Meier, M., and Schimpf, J. An architecture for Prolog extensions. Lecture Notes
in Computer Science 660 (1993), pp. 319-338.

Pereira, L. M., Aparicio, J. N., and Alféres, J. J. Nonmonotonic Reasoning
with Well Founded Semantic. In Proceedings of the 8th International Conference on
Logic Programming (1991), K. Furokawa, Ed., pp. 475-489.

Stankevicius, A. G., Garcia, A. J., and Simari, G. R. Una arquitectura
para la ejecucion de Programas Légicos Rebatibles. In 5th International Congress
on Informatics Engineering (Capital Federal, Argentina, August 1999), Universidad
de Buenos Aires, pp. 450-461.

Simari, G. R., and Loui, R. P. A Mathematical Treatment of Defeasible Rea-
soning and its Implementation. Artificial Intelligence 53, 1-2 (1992), 125-157.

Stankevicius, A. G. Visualizacién e Interpretacién de Programas Légicos Re-
batibles. BSc. thesis, Departamento de Ciencias de la Computacién, Universidad
Nacional del Sur, Bahia Blanca, Argentina, February 1999.

Warren, D. H. D. An Abstract Prolog Instruction Set. Technical Note 309, SRI
International, Menlo Park, United States, October 1983.

