
An Abstract Machine for the Execution of DeLP Programs

A. G. Stankevicius A. J. Garćıa

Laboratorio de Investigación y Desarrollo en Inteligencia Artificial
Departamento de Ciencias de la Computación

Universidad Nacional del Sur
Bah́ıa Blanca - Buenos Aires - ARGENTINA

e-mail: {ags,ajg}@cs.uns.edu.ar

Abstract

Defeasible Logic Programming (DeLP) is a knowledge representation and reasoning
formalism that by combining Logic Programming with Defeasible Argumentation is able
to represent incomplete and potentially contradictory information.

Within the field of Logic Programming, most of the implementations of Prolog and
its variants are based on an abstract machine defined by D. Warren (nowadays known
as WAM, standing for Warren’s Abstract Machine), that sits between the program and
the actual hardware executing it. This separation of concerns allows the developer to
focus mainly on the aspects related to the language being implemented, and not on the
distinctive characteristics of the available hardware.

In this paper we summarize how an abstract machine can also help in the context of
DeLP, exploring the points of contact between WAM and a particular abstract machine
defined for this theory called JAM.

Keywords: knowledge representation and reasoning, defeasible argumentation,

abstract machines.

1 Motivations

In the past few years, research in Logic Programming has striven to capture nonmonotonic
features, seeking to develop more powerful tools for knowledge representation and reasoning.
Defeasible Logic Programming (DeLP) is one of those formalism, that by combining Logic Pro-
gramming with Defeasible Argumentation is able to represent incomplete and potentially con-
tradictory information. Ideas borrowed from Defeasible Argumentation [8] such as representing
defeasible reasons as arguments or performing a full dialectical analysis before returning the
answer of queries are carefully added to a knowledge representation language featuring Pro-

log-like rules.
Within the field of Logic Programming, most of the implementations of Prolog and its vari-

ants are based on an abstract machine defined by D. Warren [11] (nowadays known as WAM,
standing for Warren’s Abstract Machine), that sits between the program and the actual hard-
ware executing it. The possibility of setting aside secondary aspects of the compiler/interpreter



design has compelled many developers to adopt this approach, making it the de-facto standard
for implementing Prolog [1]. Moreover, the most efficient implementations seldom translate
Prolog code directly into native code, taking advantage instead of an intermediary WAM-like
abstract machine.

The situation is analogous in the context of DeLP: it would be useful to have an intermediary
abstract machine sitting half way between a DeLP program and the hardware executing the
actual queries. The work reported in [4] defined an abstract machine suitable for this language,
which due to historical reasons was called Justification Abstract Machine, or JAM for short.
Unfortunately, this abstract machine specifically designed for an earlier revision of the theory
[2, 6] lacks the recent updates made to the syntax and semantics of the system in [3, 5].

In this paper we summarize how this abstract machine can be adapted to the context of the
latest revision of the system [5], exploring the points of contact between WAM and JAM, and
emphasizing the changes introduced to reflect this new semantics. It is structured as follows:
the next section introduces the essential concepts of DeLP. Section 3, discusses the actual JAM

operation, covering what aspects of the original JAM have been updated. Finally, Section 4
presents the conclusions reached in this work.

2 Defeasible Logic Programming

This section briefly introduces DeLP’s essentials following its most recent formulation [5], re-
ferring the reader looking for a comprehensive presentation to [3].

The DeLP language is defined in terms of three disjoint sets: facts, strict rules, and defeasible
rules. Following the standard nomenclature, a literal L can either be a ground atom A or its
strong negation ∼A. In this context, a fact is just a literal; a strict rule is an ordered pair
Head← Body whose first component, Head, is a literal, and whose second component, Body,
is a finite non-empty set of literals. A strict rule with head L0 and body {L1, . . . , Ln} can
also be written as L0 ← L1, . . . , Ln. In a like manner, a defeasible rule is an ordered pair
Head← Body whose first component, Head, is a literal, and whose second component, Body,
is a finite non-empty set of literals. In this case, a defeasible rule with head L0 and body
{L1, . . . , Ln} can also be written as L0 −≺ L1, . . . , Ln. Syntactically, the symbol ‘−≺’ is all that
distinguishes a defeasible rule from a strict one. This distinction is important because strict
rules represent undisputed information while, in contrast, defeasible rules represent tentative
information, good until we find one or more reasons challenging it.

In this formalism, the state of the world we are interested in modelling is captured as a
Defeasible Logic Program (de.l.p), essentially a possibly infinite set of facts, strict rules and
defeasible rules. In a given de.l.p P , the subset of facts and strict rules is referred as Π, and
the subset of defeasible rules as ∆. When required, the de.l.p P can also be noted as (Π, ∆).
Considering that the set Π is used to represent non-defeasible information, it must express
certain internal coherence: it is assumed that the set Π of every de.l.p P is non-contradictory,
in the sense that no two complementary literals (such as fly(fred) and ∼fly(fred)) be derivable
at the same time. As usual, the literals that can be derived are obtained chaining as many
rules as required:

Definition 1. (defeasible derivation) [5]
Let P = (Π, ∆) be a de.l.p and L a ground literal. A defeasible derivation of L from P ,
noted P |∼ L, consists of a finite sequence L1, L2, . . . , Ln = L of ground literals, where each Li,
1 ≤ i ≤ n, satisfy that:



1. Li is a fact, or

2. there exists a rule in P (either strict or defeasible) with a head Li and body B1, B2, . . . , Bk

such that every literal Bj, 1 ≤ j ≤ k, already appears in the sequence before Li.

�

Note that although the set Π must be non-contradictory, the set ∆, and hence P itself (i.e.,
Π ∪∆), may be contradictory, as shown in the following example.

Example 1. The following is a valid de.l.p:

Π =



bird(X) <- penguin(X).
∼fly(X) <- penguin(X).

bird(tweety).

bird(fred).

sick(fred).

penguin(pengo).


∆ =


fly(X) -< bird(X).
∼fly(X) -< weak(X).

weak(X) -< sick(X).



In the previous example, it is possible to defeasible derive both fly(fred) and ∼fly(fred).
However, out of the literals that can be defeasible derived in a given de.l.p, only those able
to stand the dialectical analysis are entailed. This procedure is borrowed from the field of
Defeasible Argumentation, where people speak in terms arguments instead of derivations. An
argument is a tentative piece of reasoning supporting a given conclusion, formally defined in
this theory as follows:

Definition 2. (argument structure) [5]
Let P = (Π, ∆) be a de.l.p and h a literal. We say that 〈A, h〉 is an argument structure for h,
if A is a set of defeasible rules of ∆, satisfying that:

1. there exists a defeasible derivation for h from Π ∪ A,

2. the set Π ∪ A is non-contradictory, and

3. A is minimal, in the sense that there is no proper subset A′ of A satisfying the previous
conditions.

Also, an argument structure 〈B, q〉 is a sub-argument structure of 〈A, h〉 when B ⊆ A. �

For instance, there exists defeasible derivations for fly(tweety) and fly(pengo) in the pro-
gram shown in the Example 1. However, only fly(tweety) is backed up by an argument, since
the set of ground rules used in the derivation of fly(pengo) are inconsistent with Π and there-
fore no valid argument structure sanctions it. Yet, in the same program is still possible to build
the argument structures 〈A, f ly(fred)〉 and 〈B, ∼fly(fred)〉, where:

A = {fly(fred) −≺ bird(fred)}
B = {∼fly(fred) −≺ weak(fred), weak(fred) −≺ sick(fred)}

In DeLP, this kind of conflict arising between argument structures is settled defining under
which conditions one argument structure has enough strength to warrant its conclusion. In
short, a given literal is warranted if we are able to find an argument structure for that literal
that remains undefeated.



Definition 3. (counter-argument) [5]
We say that 〈A1, h1〉 counter-argues (also rebuts or attacks) 〈A2, h2〉 at the literal h, if and
only if there exists a sub-argument structure 〈A, h〉 of 〈A2, h2〉 such that the set Π ∪ {h, h1} is
contradictory. �

Definition 4. (defeater) [5]
The argument structure 〈A1, h1〉 is a defeater for 〈A2, h2〉, if and only if there exists a sub-
argument structure 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉 counter-argues 〈A2, h2〉 at h, and
either:

• 〈A1, h1〉 is preferred1 over 〈A, h〉 (proper defeat), or

• 〈A1, h1〉 is unrelated by the preference criterion to 〈A, h〉 (blocking defeat)

�

Since defeaters are in turn argument structures, there may exists defeaters for the defeaters,
and so on. This sequence of argument structures, each one defeating the previous one, is called
argumentation line, in the sense that this exchange of reasons is actually exploring a given topic
of the controversy.

Definition 5. (argumentation line) [5]
Let P be a de.l.p and 〈A0, h0〉 an argument structure from P . An argumentation line for 〈A0, h0〉
is a sequence of argument structures from P , noted λ = [〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . .], where
each 〈Ai, hi〉, i > 0, is a defeater of its predecessor 〈Ai−1, hi−1〉. �

As it has been shown elsewhere [7], not every exchange of counter-arguments actually con-
stitutes a valid pattern of reasoning. For instance, circular argumentation is a particular case
of fallacious reasoning which should be avoided. The occurrence of cycles and other undesired
situations are prevented imposing the following conditions over the potential argumentation
lines, where λS denotes the set of argument structures occupying even positions in the line λ,
and λI the set of argument structures occupying its odd positions.

Definition 6. (acceptable argumentation line) [5]
Let λ = [〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉] be an argumentation line. We say that λ is an accept-
able argumentation line if and only if the following conditions are met:

• λ is a finite sequence.

• The set λS of argument structures supporting 〈A0, h0〉 and the set λI of argument struc-
tures interfering with 〈A0, h0〉 are concordant.2

• No argument 〈Ak, hk〉 in λ is a sub-argument structure of an 〈Ai, hi〉 appearing before in
λ (i.e., i < k).

• For all i such that the argument structure 〈Ai, hi〉 is a blocking defeater for 〈Ai−1, hi−1〉,
whenever 〈Ai+1, hi+1〉 exists, then 〈Ai+1, hi+1〉 must be a proper defeater of 〈Ai, hi〉.

�
1according to the preference criterion being applied (e.g., specificity).
2a set {〈B1, q1〉, 〈B2, q2〉, . . . , 〈Bm, qm〉} is said to be concordant if Π ∪ B1 ∪ . . . ∪ Bm is non-contradictory.



Finally, the following definition captures the essence of the procedure that decides whether
an argument structure warrants its conclusion. Once again, an argument structure becomes a
warrant only if it is not defeated. This prompts for a complete dialectical analysis.

Definition 7. (dialectical tree) [5]
Let 〈A0, h0〉 be an argument structure of a de.l.p P . A dialectical tree for 〈A0, h0〉, noted
T〈A0,h0〉, is recursively defined as follows:

1. The root of the tree is labeled with 〈A0, h0〉.

2. Let N be an inner node of the tree labeled 〈An, hn〉, and λ = [〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉]
be the sequence of labels in the path from the root to N . Let 〈B1, q1〉, 〈B2, q2〉, . . . , 〈Bk, qk〉
be all the defeaters of 〈An, hn〉. For each defeater 〈Bi, qi〉, 1 ≤ i ≤ k, such that the argu-
mentation line λ′ = [〈A0, h0〉, 〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is acceptable, then the node
N must have a child labeled 〈Bi, qi〉. If there is no defeater for 〈An, hn〉 or there is no
〈Bi, qi〉 such that λ′ is acceptable, then N is a leaf.

�

The outcome of this tree-structured dialectical analysis (i.e., whether a certain argument
structure is able to warrant its conclusion), can be easily determined following a simple recur-
sive, bottom-up labeling:

Definition 8. (marking of a dialectical tree) [5]
Let 〈A, h〉 be an argument structure and T〈A,h〉 its dialectical tree. The corresponding marked
dialectical tree, noted T ?

〈A,h〉, is obtained marking every node in T〈A,h〉 as follows:

1. All the leaves in T〈A,h〉 are marked U in T ?
〈A,h〉.

2. Let 〈B, q〉 be an inner node of T〈A,h〉. Then 〈B, q〉 should be marked U in T ?
〈A,h〉 if and

only if every child of 〈B, q〉 is marked D in T ?
〈A,h〉. Conversely, the node 〈B, q〉 should be

marked D in T ?
〈A,h〉 if and only if it has at least one child marked U.

�

Definition 9. (warrant) [5]
Let 〈A, h〉 be an argument structure and T ?

〈A,h〉 its associated marked dialectical tree. The
literal h is warranted if and only if the root node of T ?

〈A,h〉 is marked U. �

Although the notion of warrant characterizes a set of literals that could be interpreted as
the semantic of given de.l.p, this formalism takes into account more possibilities as answers to
a given query −≺ h:

• YES, if h is warranted.

• NO, if h is warranted, where h denotes the complement of h with respect to strong
negation.

• UNDECIDED, if neither h nor h are warranted.

• UNKNOWN, if h is not present in the signature of the de.l.p under consideration.



On the one hand, the query fly(tweety) is warranted in the de.l.p of the Example 1, therefore
it succeeds and gets a YES answer. On the other hand, the query fly(coco) is not present
in the program signature, hence it does not succeeds and gets an UNKNOWN answer. In
addition, the query fly(fred) gets an UNDECIDED answer (recall the competing arguments
constructed above), and the query ∼fly(tweety) gets a NO answer, since its complement is
actually warranted.

After this succinct introduction to DeLP, the next section reviews the abstract machine
proposed for executing its programs, upon which several implementations are based.

3 An Abstract Machine suitable for DeLP

In this section we review the particular abstract machine defined for DeLP called JAM [4],
showing how it can be updated to the reflect the changes introduced along the DeLP evolution.
Recall that the original JAM was specifically designed for an earlier revision of the formal
theory, whose syntax and semantics is slightly different with respect to the formalism briefly
stated in the previous section. To begin with, the changes introduced at the syntax level
should be accounted for in the compiler, thus requiring no updates on the abstract machine.
For instance, although JAM is able to deal with defeasible rules with an empty body (these
rules are known as presumptions), the compiler should inform the user that no rule can have
an empty body under the new syntax.

In contrast, the changes introduced at the semantic level do require further consideration.
Since JAM was conceived as an extension of WAM, we first cover the conventional WAM

operation, and then address the features only available in JAM. Notably, both execution models
are based on the observation that any rule can be considered as a set of queries (its body) that,
when satisfied, entails a new fact (its head). Under this conception, the whole operation of
WAM, and its extension JAM, can be analyzed in terms of facts and queries.

Example 2. Consider the following Prolog program:

a(X) <- b(X), c(X). b(q).

a(X) <- d(X). c(r).

d(s).

This simple program can be translated into the WAM code shown in Figure 1, along with the
translation of an arbitrary query ?- a(X)., whose code starts in the label ?:.

The execution model of WAM starts with the query that must be solved. The program
counter register (P ) holds the address of the instruction about to be executed. This register is
incremented after its execution in order to refer the next instruction, unless the instruction just
executed were a control transference. For instance, a control transference takes place when a
call instruction gets executed: this instruction loads the address of the predicate to be called
in the register P and also stores the return address in the continuation register (CP ). The
address where the code associated with each predicate begins is stored in a permanent symbol
table.

The WAM instructions allocate and deallocate are responsible for storing and recovering
environments from the STACK. These environments hold the local variables that should be
preserved between predicate invocations. A distinctive feature in logic programming is the
possibility of defining the same predicate through several independent rules. When a particular



a/1: try me else E1: b/1: just me ?: allocate 1

allocate 1 allocate 0 put variable X1 A1

get variable X1 A1 get constant q A1 call a/1

put value X1 A1 deallocate deallocate

call b/1 proceed proceed

put value X1 A1 c/1: just me

call c/1 allocate 0

deallocate get constant r A1

proceed deallocate

E1: just me proceed

allocate 0 d/1: just me

get variable X1 A1 allocate 0

put value X1 A1 get constant s A1

call d/1 deallocate

deallocate proceed

proceed

Figure 1: An example of actual WAM code

definition for a predicate is chosen, the remaining alternatives are stored inside a choice-point.
These choice-points are maintained by the WAM’s special instructions implementing backtrack-
ing : try me else, retry me else, and trust me. For instance, the query in the Example 2 only
succeeds when the second definition of the predicate a/1 is chosen.

Regarding the memory architecture, even though JAM includes additional regions not
present in the original WAM, its structuring remains straightforward. The memory architec-
ture is composed of several independent regions, each associated with a set of special registers.
These regions and their corresponding registers are sketched in Figure 2. In the first place,
the CODE region keeps the compiled code of the rules that made the program. The region
HEAP is a stack which stores all the structures dynamically created throughout execution,
mostly in the unifications. The region STACK is also a stack which stores two types of objects:
the environments and the choice-points, already mentioned above. The region T-HEAP (tem-
porary heap) is analogous to HEAP, but for storing the terms of the temporary facts (whose
use within JAM is discussed further bellow in Section 3.1). The next region, LINE, stores
the current argumentation line being explored. Note that the last two memory regions are not
present in WAM, since they deal with aspects of the dialectical analysis not required for solving
Prolog queries. Finally, the region TRAIL stores references to the variables binded during
those unifications that should be unbinded when backtracking.

In addition to those registers shown in Figure 2, there are two other families of registers:
parameter registers and term registers. In the one hand, the parameter registers, denoted as Ai,

low memory high memory
CODE HEAP STACK T-HEAP LINE TRAIL

↑
P

↑
CP

↑
H

↑
HB

↑
S

↑
E

↑
B

↑
B0

↑
T

↑
L

↑
TR

Figure 2: JAM memory architecture



are used to communicate the location of the parameters of a certain goal in the current query
to the head of the clause with whom it will be unified. On the other hand, the term registers,
denoted as Xi, are used in the construction of terms in the HEAP.

The HEAP is the memory region holding all the terms referred through the execution. Each
cell in the HEAP contains a pair (type, content), where type describes what is stored in content.
The valid types are the usual ones: reference, constant, structure, and list. Since variables can
either be binded to a term or unbinded, they are represented by the pair (reference, address),
where address denotes the location of the term binded to it and assuming that a self reference
denotes an unbinded variable. Constants are easily represented by the pair (constant, token),
where token is the actual constant being stored. Finally, a structure of the form f(t1, . . . , tn)
is represented by the pair (structure, address), where address denotes the location of the pair
(constant, f) which holds the functor name, and the following n cells contain the representation
of its n subterms.

Insofar, the topics covered were common to both WAM and JAM. In what follows, we focus
our attention on those aspects of JAM not present in WAM.

3.1 Finding argument structures

The construction of an argument for a query involves two main tasks: to find a defeasible
derivation for that query, and then to check its consistency. The defeasible derivation can be
obtained applying the same mechanism used in WAM when solving Prolog queries (i.e., the
backward-chaining of rules). However, the consistency check requires some additional effort.
Within JAM, the consistency of defeasible derivations is checked while the derivation is being
built, making a clever use of backward-chaining. When a rule c −≺ L is about to be used,
it is first confirmed whether Π ∪ {c} remains consistent. Naturally, no rule should be used
in a derivation when its current bindings make it inconsistent with Π (recall the consistency
requirement in argument structures imposed in Definition 2).

Let cons(A) be the set of ground literals appearing as the consequences of the defeasible
rules in an argument structure 〈A, h〉. Any defeasible rule c −≺ L can be used in the construction
of a given argument structure 〈A, h〉 if and only if Π∪ cons(A′)∪{c} is consistent, where A′ is
the set of defeasible rules used up to this point in the construction of that argument structure
(also note that Π ∪ cons(A′) is already consistent). These elements in cons(A′) are what we
call temporary facts. They are called facts because while being used they behave exactly like
facts, and they are called temporary because their lifespan is restricted only to the construction
of the current argument structure.

To sum up, JAM implements its consistency checks using the same machinery that finds
defeasible derivations, also the very same procedure used for solving Prolog queries within
WAM. The correctness of this approach has been established in [2], from where we adapted the
following lemma:

Lemma 1. Let Π be a consistent set of strict rules, and h be a literal. Then, the set Π∪{h} is
inconsistent if and only if there exists a derivation of h from Π∪ {h}, allowing the use of some
inverted rules.

The inverted rules are a third kind of rule that JAM uses internally for consistency checks
(note that the knowledge engineer does not need to be aware of their existence). To distinguish
inverted rules from the strict and defeasible ones, they are denoted as L0 @— L1, L2, . . . , Ln.
This kind of rules play a key role within JAM, as shown in the next theorem, also adapted
from [2].



Theorem 2. Let P = (Π, ∆) be a de.l.p. In this context, a defeasible rule h −≺ L can be used
in the construction of an argument structure 〈B, q〉 if and only if h cannot be derived from
Π ∪ cons(B′) ∪ {h}.

Demonstration. The rule h −≺ L can be used in the construction of 〈B, q〉 if and only if
Π ∪ cons(A′) ∪ {h} is consistent, and by virtue of Lemma 1, Π ∪ cons(A′) ∪ {h} is consistent
if and only if h can not be derived from Π ∪ cons(A′) ∪ {h}. �

Even though consistency checks within JAM are analogous to defeasible derivations, no
inverted rules should be used in the construction of an argument structure. For this reason, two
instructions, prove consistency else and end consistency proof, delimit the boundaries of the
consistency check. These instructions set and clear the internal flags called defeasibleProof

and allowInvertedRules that control the kind of rule that are allowed to be used in a given
state. Within JAM, it is quite easy to identify the different types of rules by looking into the
compiled code initially loaded in the CODE region, since different types of rules are compiled
using a different sets of instructions, as shown in the following table:

Strict Rules Defeasible Rules Inverted Rules
just me defeasible just me just me checking consistency

try me else defeasible try me else try me else checking consistency

retry me else defeasible retry me else retry me else checking consistency

trust me defeasible trust me trust me checking consistency

Since temporary facts (i.e., the head of every defeasible rules used up to this point) are
indeed temporary, lasting only until the current argument structure is completed, they are
stored in a separate structure called temporary fact table. In a like manner, the terms in
these temporary facts are stored in a separate region (the T-HEAP), apart from the regular
terms. The JAM instructions save srule terms, save drule terms and save fact generate
these temporary facts. Finally, as an example of the role of these concepts, Figure 3 depicts
the JAM code associated with the rules fly(X) −≺ bird(X) and ∼hen(X) @— ∼bird(X).

3.2 Computing answers

Since determining whether a given literal h is warranted is essential in order to answer queries
about h, JAM must implement the dialectical analysis structured as a tree mentioned in Def-
inition 7. The construction of this dialectical tree can be described in terms of the following
standard Prolog predicates:

warranted(Q) :- find argument(A), /+ defeated(A).

defeated(A) :- find defeater(A,D), /+ defeated(D).

Putting it into words, a literal Q is warranted when an argument structure for this literal
can be constructed, provided that it is not defeated. In turn, an argument structure is defeated
if we found a defeater for it, such that this new defeater is not defeated by another argument
structure. Note that the goal /+ defeated(A) in the first clause is defined in terms of Prolog’s
standard negation as failure. It succeeds when there are no defeaters for the argument structure
A, and it fails when there exists at least one of those defeaters. Figure 4 shows how this procedure
is implemented within JAM. First, an argument structure for the current query is constructed
(following the procedures discussed in the previous section). Then, if the construction succeeds



fly/1: defeasible just me ∼hen/1: just me checking consistency

allocate 2 allocate 0

get variable X2 A1 get variable X1 A1

save drule terms fly/1 X1 put value X1 A1

forbid inv call ∼bird/1

put value X2 A1 forbid inv

call bird/1 only strong

set defeasible stop only strong

prove consistency else L: deallocate

put structure ∼fly/1 A1 proceed

set value X2

call naf/1

L: end consistency proof

save fact X1

deallocate

proceed

Figure 3: JAM code for the rules fly(X) -< bird(X) and ∼hen(X) @- ∼bird(X)

(it could be case that no argument structure support that literal), JAM looks for level one
defeaters. If one of such defeaters is found, then JAM looks for level two defeaters, and so on.

In this example, the instruction prepare to defeat k dynamically generates the JAM code
for the predicates DefeatK/0, exactly as if it were part of the original program loaded into
the machine. In a sense, we are using the same JAM to execute the aforementioned piece
of Prolog code, a task it can easily achieve since the strict part of DeLP programs behaves
almost like standard Prolog. The purpose of these dynamic predicates is to find defeaters
of the most recently constructed argument structure. When a defeater is found, it must be
verified whether this defeater is in turn defeated, hence DefeatK/0 is almost performing a
parallel dialectical analysis. The predicate DefeatK/0 follows the same strategy as before,
trying to find an argument structure that defeats the one just constructed and then verifying
that this defeater is not also defeated, this time considering defeaters in the next level, using
the instruction prepare to defeat K+1 and attempting the goal /+ DefeatK+1/0, and so on.

Throughout this process, the memory region called LINE holds the current argumentation
line, containing every support and every interfering argument structure in the path from the

?: allocate ; start of the query.
... ; query code.

call q/n ; builds an argument.
prepare to defeat 1 ; considers all its possible defeaters.
put constant Defeat1/0 A1 ; attempts to prove that...
call naf/1 ; ...no defeater can be found.
deallocate ;
end query ; end of the query.

Figure 4: JAM’s code for a query q/n



current node to the root of the dialectical tree. This information is used during the execu-
tion of those JAM instructions that verify whether the argumentation line under consideration
is acceptable, namely not circular, not less specific, proper defeat and blocking defeat.
According to Definition 6, there are four conditions that characterize an acceptable argumenta-
tion line. The first condition is trivially met by any algorithm that returns an answer, like this
one. For the second condition, the concordance check over the set of supporting and interfering
argument structures present in the current argumentation line was also verified in the former
theory, thus JAM already check this condition using the information stored in the temporary
fact table. The same applies to the third condition, since circular argumentation, a long stand-
ing form of fallacious argumentation, was already averted in the previous formalization. Al last,
the fourth condition can be asserted updating the semantic of the instructions proper defeat

and blocking defeat. In the original JAM, blocking defeaters were only accepted as a defeater
of the argument structure labeling the root of the dialectical tree, but in the new formulation
they are allowed anywhere but as response of another blocking defeater.

It should be noted that the dialectical tree being constructed never gets represented as a
complete tree, only the argument structures present in the current argumentation line are kept.
However, when an argumentation line is exhausted, some of its argument structures might not
be part of the new argumentation line about to be explored. This is implemented within JAM

accessing LINE like as a stack, storing the register that holds the current top of this stack
(called L) inside the choice-points, and restoring its value whenever backtracking.

Finally, being able to determine whether a given literal is warranted allows JAM to compute
the right answer. For instance, given a literal h, just attempt to warrant both h and h, and
then return the answer shown in the following table:

h h right answer

warranted not warranted YES

not warranted warranted NO

not warranted not warranted UNDECIDED

warranted warranted (impossible)

4 Conclusions

Defeasible Logic Programming provides an attractive framework for knowledge representation
and reasoning, mainly due to its ability to represent incomplete and potentially contradictory
information. Having an adequate implementation of this theory leads not only towards devel-
oping robust applications but also allowing the fine tuning of the formalism itself. To that end,
in this papers we have shown how can an approach proved successful within Logic Program-
ming, namely having an abstract machine sitting half way between the logic program and the
hardware actually executing it, could also be adapted to context of DeLP.

An abstract machine suitable for DeLP was already introduced in a previous work, although
it was specifically designed for an earlier revision of the theory, that lacks the recent updates
to its syntax and semantics. The purpose of this paper was to highlight the main features of
the internal operation of this abstract machine, clearly stating as well what must be changed
in order to make it suitable for the newest revision of DeLP. In fact, this updated abstract
machine actually underpins the DeLP implementation reported in [9, 10], which is available for
download at http://cs.uns.edu.ar/∼ags/DLP.



Acknowledgments

This research was partially supported by Secretaŕıa General de Ciencia y Tecnoloǵıa de la
Universidad Nacional del Sur (24/N016) and by Agencia Nacional de Promoción Cient́ıfica y
Tecnológica (PICT 2002 No. 13096). The first author is also partially supported by a fellowship
from Comisión de Investigaciones Cient́ıficas (CIC).

References

[1] Äıt-Kaci, H. Warren’s Abstract Machine, a tutorial reconstruction. MIT Press, 1991.

[2] Garćıa, A. J. La Programación en Lógica Rebatible: su definición teórica y computa-
cional. Master’s thesis, Departamento de Ciencias de la Computación, Universidad Na-
cional del Sur, Bah́ıa Blanca, Argentina, June 1997.

[3] Garćıa, A. J. Programación en Lógica Rebatible: Lenguaje, Semántica Operacional,
y Paralelismo. PhD thesis, Departamento de Ciencias de la Computación, Universidad
Nacional del Sur, Bah́ıa Blanca, Argentina, Dec. 2000.

[4] Garćıa, A. J., and Simari, G. R. Una extensión de la máquina abstracta de Warren
para la argumentación rebatible. In Proceedings of the III Congreso Argentino de Ciencias
de la Computación (La Plata, Oct. 1997), Universidad Nacional de La Plata.

[5] Garćıa, A. J., and Simari, G. R. Defeasible Logic Programming: An Argumentative
Approach. Journal of Theory and Practice of Logic Programming 4, 1–2 (2004), 95–138.

[6] Garćıa, A. J., Simari, G. R., and Chesñevar, C. I. An Argumentative Framework
for Reasoning with Inconsistent and Incomplete Information. In Proceedings of the Work-
shop on Practical Reasoning and Rationality (Brighton, Reino Unido, Aug. 1998), 13th
European Conference on Artificial Intelligence, pp. 13–19.

[7] Simari, G. R., Chesñevar, C. I., and Garćıa, A. J. The Role of Dialectics in Defea-
sible Argumentation. In Proceedings of the XIV Conferencia Internacional de la Sociedad
Chilena para Ciencias de la Computación (Concepción, Chile, Nov. 1994), Universidad de
Concepción, pp. 111–121.

[8] Simari, G. R., and Loui, R. P. A Mathematical Treatment of Defeasible Reasoning
and its Implementation. Artificial Intelligence 53, 1–2 (1992), 125–157.

[9] Stankevicius, A. G., Garćıa, A. J., and Simari, G. R. Una arquitectura para
la ejecución de Programas Lógicos Rebatibles. In Proceedings of the 5th International
Congress on Informatics Engineering (Capital Federal, Argentina, Aug. 1999), Universidad
de Buenos Aires, pp. 450–461.

[10] Stankevicius, A. G., Garćıa, A. J., and Simari, G. R. Compilation Techniques for
Defeasible Logic Programs. In Proceedings of the 6th International Congress on Informatics
Engineering (Capital Federal, Argentina, Apr. 2000), Universidad de Buenos Aires.

[11] Warren, D. H. An Abstract Prolog Instruction Set. Technical Note 309, SRI Interna-
tional, Menlo Park, CA, Oct. 1983.


