Módulo 04 Aritmética de Punto Fijo (Pt. 1)

Organización de Computadoras Depto. Cs. e Ing. de la Comp. Universidad Nacional del Sur

Copyright

- Copyright © 2011-2024 A. G. Stankevicius
- Se asegura la libertad para copiar, distribuir y modificar este documento de acuerdo a los términos de la GNU Free Documentation License, Versión 1.2 o cualquiera posterior publicada por la Free Software Foundation, sin secciones invariantes ni textos de cubierta delantera o trasera
- Una copia de esta licencia está siempre disponible en la página http://www.gnu.org/copyleft/fdl.html
- La versión transparente de este documento puede ser obtenida de la siguiente dirección:

http://cs.uns.edu.ar/~ags/teaching

Contenidos

- Clasificación de las operaciones
- Codificación decimal en binario (BCD)
- Representación SM
- Representación RC
- Representación DRC
- Operaciones de suma y de resta
- Detección de overflow
- Otras codificaciones

- Las operaciones aritméticas se clasifican en tres grandes categorías:
 - Operaciones aritméticas estándares
 - Funciones aritméticas elementales
 - Operaciones pseudo-aritméticas
- A su vez, se dispone esencialmente de dos modos de operación:
 - Operación en punto fijo
 - Operación en punto flotante

- Operaciones aritméticas estándares:
 - Esta categoría incluye las cuatro funciones aritméticas primitivas: suma, resta, multiplicación y división, tanto en punto fijo como en punto flotante
 - Toda otra función matemática podrá ser expresada como una composición de estas cuatro operaciones

- Funciones aritméticas elementales:
 - Esta categoría incluye aquellas operaciones usadas frecuentemente en cómputos matemáticos, tales como exponencial, raíz cuadrada, funciones trigonométricas, hiperbólicas, etc.
 - No todas las computadoras implementan estas funciones en hardware, en general se suelen implementar en firmware (microcódigo) o bien directamente como software en una librería.

- Operaciones pseudo-aritméticas:
 - Estas categoría incluye operaciones que requieren un cierto grado de cálculo aritmético, pero están relacionadas con la ejecución de un programa
- Consta de dos subcategorías:
 - Aritmética de direccionamiento: operaciones relacionadas al cómputo de la dirección efectiva en memoria de los datos
 - Aritmética de edición de datos: operaciones lógicas y de transformación de datos tales como, load/store, empaquetado/desempaquetado, etc.

Modos de operación

- Operación en punto fijo:
 - Este modo de operación es usado en problemas comerciales o cálculos estadísticos y se caracteriza por tener el punto decimal en una posición prefijada
- Consta de dos subcategorías:
 - Operación entera: los resultado se alinean en el extremo derecho, como si el punto decimal ocupara esa posición
 - Operación fraccionaria: los resultados se alinean en el extremo izquierdo, como si el punto decimal ocupara esa posición

Modos de operación

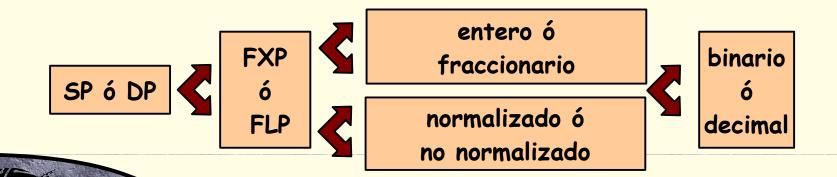
- Operación en punto flotante:
 - Este modo de operación es usado en problemas de tipo ingenieril o científico, donde frecuentemente se requiere escalamiento para manejar tanto magnitudes muy grandes como muy pequeñas
- Consta de dos subcategorías:
 - Operación normalizada: el resultado de toda operación es normalizado antes de ser retornado
 - Operación no normalizada: el resultado de toda operación es retornado tal cual fuera obtenido

Precisión de las operaciones

- Las instrucciones aritméticas también pueden ser clasificadas de acuerdo a su precisión:
 - Precisión simple (SP): se refiere a las operaciones definidas sobre operandos de tamaño estándar, esto es, con operando de longitud igual a una palabra
 - Precisión doble (DP): se refiere a las operaciones definidas sobre operandos de tamaño doble, esto es, con operandos de longitud igual a dos palabras
 - Triple, cuádruple y las restantes precisiones pueden definirse de manera análoga

Binario vs. decimal

- Algunas arquitecturas ofrecen la posibilidad de operar directamente sobre la base decimal
 - La conversión (operaciones de pack y de unpack), requiere de instrucciones para manejar los datos directamente en formato decimal
 - Por caso, la instrucción ADD puede hacer referencia a 16 operaciones aritméticas distintas, a saber:



Codificación de dígitos

Para codificar cada dígito decimal es necesario hacer uso de k bits, donde:

$$k = \lceil \log_2 10 \rceil = 4$$

Es posible postular múltiples codificaciones para cada dígito decimal haciendo uso de esos bits. Por ejemplo:

0	0000	0000	0011	0000
1	0001	0001	0100	0001
2	0010	0011	0101	0011
3	0011	0111	0110	0101

Código BCD-2421

El código BCD-2421 denota en su nombre el peso asignado a cada posición en la codificación

Se trata de un sistema pos	sicional
----------------------------	----------

- Presenta una línea de simetría por autocomplementación
- Esta característica facilita el cómputo de la diferencia entre magnitudes de igual signo y la suma de magnitudes de distinto signo

0	0000
1	0001
2	0010
3	0011
4	0100
5	1011
6	1100
7	1101
8	1110

2421

Código BCD-8421

- El código BCD-8421 codifica cada dígito decimal directamente en binario
 - También se lo conoce como código
 BCD natural
 - Se trata de un sistema posicional
 - El peso de cada posición coincide con las sucesivas potencias de dos
 - No es posible encontrar ninguna línea de simetría que resulte de utilidad

	8421
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Código BCD exceso-3

El código BCD exceso-3 también codifica cada dígito decimal en binario, si bien les suma previamente un exceso

-	Producto del	exceso,	deja	de	ser
	un sistema p	osiciona			

- Como se puede apreciar, resulta simétrico por autocomplementación
- → En esta codificación el acarreo binario coincide con el acarreo decimal

0 1 2	0011 0100 0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100

Código Gray

- El código Gray es simétrico por construcción
 - También se lo conoce como código progresivo cíclico
 - Se trata de una codificación no posicional
 - Como se puede observar presenta múltiples líneas de simetría
 - Nótese que entre la codificación de un dígito y el siguiente se modifica a lo sumo un bit

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101

- Recordemos que elegida una base r y una precisión p (cantidad de dígitos), el aporte de cada dígito al valor denotado depende exclusivamente de su posición
 - → La idea es que los primeros n dígitos denoten la parte entera y los restante k dígitos la parte fraccionaria
 - La elección de n y de k tiene como efecto colateral fijar la posición del punto decimal, razón por la cual hablamos de aritmética de punto fijo (FXP)
 - → Usualmente, $\mathbf{n} = \mathbf{0}$ o bien $\mathbf{k} = \mathbf{0}$

- Un número signado representará una magnitud positiva o negativa, pero no ambas
 - Usualmente se reserva el dígito de más a la izquierda (esto es, el más significativo), para denotar el signo
 - De los r dígitos válidos sólo se han de utilizar dos para codificar el signo
 - Por caso, sea $X = (d_{n-1}, ..., d_1, d_0, d_{-1}, ..., d_{-k})_r$ un número representado en una base r, entonces:

$$d_{n-1} = \begin{cases} 0 & \text{cuando } X \ge 0 \\ r-1 & \text{cuando } X < 0 \end{cases}$$

- Las posiciones del punto decimal y del signo dependerán de n y de k
 - Cuando k = 0, el signo se ubica en el extremo izquierdo y el punto decimal en el extremo derecho
 - Cuando n = 0, el signo se ubica en el extremo izquierdo y el punto decimal inmediatamente a su derecha (justo antes del primer dígito fraccionario)
 - → La conversión entre estas dos variantes es sencilla, basta con multiplicar o dividir por una potencia de r

- La representación interna del punto decimal es implícita, no requiere reservar espacio de almacenamiento
- Para representar un número positivo, todos los dígitos salvo el de signo codifican su magnitud
 - Todas las representaciones que estudiaremos coinciden al codificar número positivos
- En cambio, para representar a un número negativo aparecen múltiples alternativas

Signo-magnitud (SM)

- Esta representación es análoga a la utilizada cotidianamente, donde la ausencia de signo representa un número positivo, y la presencia del signo – representa a un número negativo
- En la codificación signo-magnitud, el dígito de signo toma el valor 0 en los positivos y r-1 en los negativos
- Nótese que +0 y -0 denotan al mismo valor, por lo que la representación del cero no es única

Signo-magnitud (SM)

- Sea X el complemento de un dado número X
- En esta representación, X y X difieren sólo en el dígito que codifica al signo
 - Comprobemos esta situación con un ejemplo para una base r = 2 y con una precisión n = 8:

```
(00101011)_2 = +(43)_{10} (10101011)_2 = -(43)_{10}

(01111111)_2 = +(127)_{10} (11111111)_2 = -(127)_{10}

(00000000)_2 = +(0)_{10} (10000000)_2 = -(0)_{10}
```


Signo-magnitud (SM)

- ¿Qué rango de representación brinda usar SM con n dígitos en una base r?
 - → El menor número posible es (r-1 r-1 r-1 ... r-1)_r
 - → El mayor número posible es (0 r-1 r-1... r-1)_r
 - ► Es decir, el rango de representación para signo-magnitud es [-(rⁿ⁻¹-1), rⁿ⁻¹-1]
- Por caso, para una base r = 2, con n = 8 dígitos binarios, el rango se calcula como:
 - $-[-(2^7-1), 2^7-1] = [-127, 127]$

- Las computadoras suelen hacer uso de algún esquema de complementación para representar a los números negativos
 - Esto simplifica las operaciones suma de números de distintos signo, o lo que es lo mismo, de resta de números de igual signo
- Imaginemos el odómetro de una moto que queremos vender. Le pedimos a un mecánico amigo que le "rebobine" el odómetro, pero él se descuida y se pasa de largo... ¿qué sucede?

- Supongamos que el odómetro tiene sólo tres dígitos (a manera de simplificación)
- ¿Qué sucede al tratar de retroceder 5 Km estando inicialmente en el Km 003?

$$003 \rightarrow 002 \rightarrow 001 \rightarrow 000 \rightarrow 999 \rightarrow 998$$

- En algún sentido, 998 tiene que representar al número -2
- Nótese que al sumar un valor positivo con su complemento negativo, se obtiene siempre el mismo resultado... ¿cuál es ese valor? ¿y al tener n dígitos?

- ullet El resultado anterior permite determinar en general el valor de \overline{X} para cualquier X
 - Como comprobamos, $X + \overline{X} = r^n$, por lo que despejando \overline{X} nos queda $\overline{X} = r^n |X|$
 - No es conveniente tener que computar una resta toda vez que se desee saber qué valor representa un cierto número negativo en complemento a la base
 - Por suerte, como $\mathbf{r}^n = (\mathbf{r}^n \mathbf{1}) + \mathbf{1}$, se puede expresar a $\overline{\mathbf{X}}$ como $\overline{\mathbf{X}} = ((\mathbf{r}^n \mathbf{1}) |\mathbf{X}|) + \mathbf{1}$
 - Obsérvese que rⁿ 1 es un número especial, está compuesto de n dígitos iguales, de valor r-1

- En síntesis, el mecanismo simplificado para expresar un cierto número negativo en complemento a la base consiste en:
 - Primero expresar el valor absoluto del número en cuestión en el sistema complemento a la base (que por tratarse de un número positivo coincide con su representación en SM)
 - Complementar cada dígito del número, esto es, reemplazar cada dígito d_i por el valor (r-1) d_i (nótese que el signo también es complementado)
 - Finalmente, incrementar en 1 el valor obtenido

- Para r = 2 y n = 8 se desea saber qué valores codifican las siguientes cadenas de bits:
 - → Cuando el bit de signo es 0, la cosa es fácil:

```
(00001111)_2 = +(15)_{10} (01001101)_2 = +(77)_{10} (01111111)_2 = +(127)_{10} (00000000)_2 = +(0)_{10}
```

→ En cambio, si el bit de signo es 1, se trata de un número negativo el cual se debe complementar:

```
(10001111)_2 = (10000000)_2 = -[(01110000)_2 + 1] = -[(01111111)_2 + 1] = -(113)_{10}
```


- ¿Qué rango de representación brinda usar complemento a la base r con n dígitos?
 - → El menor número posible es (r-1 0 0 ... 0)_r
 - → El mayor número posible es (0 r-1 r-1... r-1)_r
 - Es decir, el rango de representación en complemento a la base es [-rⁿ⁻¹, rⁿ⁻¹ − 1]
- Por caso, para una base r = 2, con n = 16 dígitos binarios, el rango se calcula como:
 - [-2¹⁵, 2¹⁵-1] = [-32768, 32767]

- Recordemos que al representar un número negativo en complemento a la base debemos incrementar en 1 luego de complementar
 - Esta operación puede ser costosa en tiempo de ejecución, sobre todo si existen múltiples acarreos
 - Una posibilidad para evitar esta operación consiste en representar los números negativos haciendo uso del complemento a la base disminuida
 - Por caso, para un cierto número positivo X, su complemento a la base disminuida \overline{X} se calcula directamente como $\overline{X} = (r^n 1) |X|$

Volviendo al ejemplo del odómetro, el valor representado se debe retrasar una unidad (ya que falta tener en cuenta el incremento final)

$$0003 \rightarrow 0002 \rightarrow 0001 \rightarrow 0000 \rightarrow 9999 \rightarrow 9998 \rightarrow 9997$$

+3 \rightarrow +2 \rightarrow +1 \rightarrow +0 \rightarrow -0 \rightarrow -1 \rightarrow -2

Como se puede apreciar existen nuevamente dos representaciones para el cero:

$$++0 = (0 \ 0 \dots 0 \ 0)_{r}$$

 $+-0 = (r-1 \ r-1 \dots r-1 \ r-1)_{r}$

- El mecanismo simplificado para expresar un cierto número negativo en complemento a la base disminuida ahora consiste en:
 - Primero expresar el valor absoluto del número en cuestión en el sistema complemento a la base disminuida (que por tratarse de un número positivo coincidirá con su representación en signo-magnitud y en complemento a la base)
 - Finalmente, complementar cada dígito del número, esto es, reemplazar cada dígito d_i por el valor
 (r-1) d_i (el signo también es complementado)

- Para la base r = 2 se desea saber qué números codifican las siguientes cadenas de bits:
 - → Cuando el bit de signo es 0, la cosa sigue siendo fácil:

```
(00001111)_2 = +(15)_{10} (01001101)_2 = +(77)_{10} (01111111)_2 = +(127)_{10} (00000000)_2 = +(0)_{10}
```

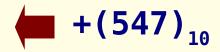
→ En cambio, si el bit de signo es 1, se trata de un número negativo el cual se debe complementar:

```
(10001111)_2 = (10000000)_2 = -(01110000)_2 = -(112)_{10}
(10001111)_2 = -(01111111)_2 = -(112)_{10}
```


- ¿Qué rango brinda usar complemento a la base disminuida con n dígitos para una base r?
 - → El menor número es (r-1 0 0 ... 0),
 - El mayor número es (0 r-1 r-1... r-1)_r
 - Es decir, el rango de representación en complemento a la base disminuida es [-(rⁿ⁻¹ − 1), rⁿ⁻¹ − 1]
- Por caso, para una base r = 2, con n = 16 dígitos binarios, el rango se calcula como:
 - $-[-(2^{15}-1), 2^{15}-1] = [-32767, 32767]$

Ejemplo comparativo

- A manera de comparación, contrastemos la representación del número (547)₁₀ usando n = 16 dígitos y una base r = 2
 - Tener en cuenta que $(547)_{10} = (1000100011)_2$

signo-magnitud complemento a 1 complemento a 2 

signo-magnitud complemento a 1 complemento a 2

Análisis

- En la elección de un sistema de representación de números signados se deben tener en cuenta diversos aspectos:
 - → ¿Qué tan sencillo resulta detectar el signo?
 - → ¿Resultan equivalentes los rangos de representación para positivos y negativos?
 - → ¿El cero tiene una representación unívoca?
 - → ¿Qué tan eficiente resulta la implementación de las operaciones básicas y de la operación de complementación?

Análisis

- Analicemos los tres sistemas a la luz de los criterios recién introducidos:
 - La detección del signo es equivalente en los tres casos, consiste en inspeccionar el primer dígito
 - En relación a la simetría del rango, signo-magnitud y complemento a la base disminuida resultan simétricos, mientras que complemento a la base no
 - → El cero tiene representación doble en signo-magnitud y en complemento a la base disminuida, pero en complemento a la base no
 - Resta analizar la eficacia de las operaciones

¿Preguntas?