JEITICS 2005 - Primeras Jornadas de Educacion en Informética y TICS en Argentina

TEACHING PROGRAMMING

Aristides Das®*, Ana Funes', Daniel Riesco’, German Montejana’, Mario Peralta’, Carlos Salgado

*Universidad Nadonal de San Luis,
Argentina
Tel.: +54 (0) 2652 42 4027 Fax: +54 (0) 2652 430224
{arisdas, afunes, driesco, gmonte, mperalta, csalgado} @unsl.edu.ar

Abstract. Programming —as Programming Fundamentals— has been and still is a
basic part of most Computing Curriculaincluding al of the Computing Disciplines —
we use here the termindogy introduced in [1]. It is dso considered by many a
problem solving teading methoddogy. There ae several facds or isaues of
Teading Programming that we think are very interesting and must be taken into
acourt and that are answers to the questions of why, what, how and even when to
teady programming. But even those questions receve different answers. We
consider some in this paper.

Keywords. Teading Programming. Programming Languages. Programming
Paradigms.

1 Introduction

There was and still is a raging dispute in Teading Programming abou several issues that
have to dowith the method, pogramming language to use, and these have & well considerations
such as. Do we use awidely employed language —at the time the teading is taking place of
course-or an ad hac teating programming language which is suppcsedly academicdly more
suitable.

We trea some of these isaues in the next sedion dviding them into questions namely “why
teaty Programming?’ in sedion 2.1,“what to tead in Teading Progranming?’ in sedion 2.2,
“how to teach Programming?’ in sedion 2.3 and finaly “when to tead Programming?’ in sedion
2.4.1n sedion 3we give some cnclusions.

2 Somelssues

We explore here some of the isaues mentioned above. The order is completely meaningless
and immaterial. We do nd pretend to be thorough o consider that the subjed is closed. On the
contrary thereisroom —alot of it! —for further discusson onthese topics and ahers.

2.1 Why Teach Programming
There ae generaly two answers to the question: (a) because is nealed in some professonal

context; (b) becauseis considered agood poblem solving methodol ogy.

Why to tead Programming takes us to explore whether Programming is going to be taught
because is considered part of the professonal curricula or just as a sort of ‘training’ in problem
solving.

Both isaues have their pros and cons.

It is not aways clea whether Programming is redly necessary to the professonal curricula
considered. Some of the Computing Discipli nes present no doults abou it, for others are harder to

Péagina 183

JEITICS 2005 - Primeras Jornadas de Educacion en Informética y TICS en Argentina

dedde. Take Information Systems for example. Do students of this discipline need to knov how to
program? Are they ever going to make aprogram? However Programming Fundamentals appeasin
all five Computing Disciplinesin the “Computing Curricula 2004, see[1,table 3.1, p. 28

In any case the question here is how much of the curricula time is taking up in leaning
Programming.

On the other hand it is believed by many that Programming is a good poblem solving
methoddogy and so it can be used as away of training —espedally young minds [6].

But if programming is ‘like’ problem solving, is there away to tead it? Can thereredly be a
general problem solving methoddogy? Can we go further than sharpening the natural ability of
somebody to solve problems and tead her/him how to solveit?[7]

2.2 What to Teach

This question encompasses ®vera isales that have to dowith (a) the paradigm in which to
tead; (b) consequently the language used; (c) problems to use @& examples; (d) programming
methoddogy; (e) and nav with the avent of the Internet appeas Web Programming —is it all that
different from the ‘hormal” programming ?

Programming Paradigms and Languages is one of the most disputed isaues —if not the most
disputed issue-inthisarea See[9, 10

We can reaognize four Paradigms: Imperative, Objed Oriented, Functional and Logicd.

Each have its own set of languages and if to chocse aparadigm to tead is a hot subjed there
is aso a big dispute on which language is the most suited to the paradigm. So for instance if one
would chocse what is probably the most common paradigm —the imperative— then the dispute over
which language to choose goes from those airrently employed by the industry to those that seems
more appropriate acadlemicdly spe&ing. Seefor instance[11].

There ae anumber of pulications criticizing one or ancther language ather as unsuitable for
teading programming or as plain ursuitable for programming. For example see[12, 13, 14

In “Computing Curricula 2001, Computer Science” [8] three gproades are wnsidered in
introduwcing Programming Fundamentals ead relating to ore of the paradigms mentioned above —
the logicd paradigm is sometime included in the functional paradigm— namely ‘Imperative-first’,
‘Objeds-first’” and ‘Functional-first’. The ‘Breadth-first’ approach —that cdls for a more hdlistic
point of view— although it has been strongly remmmended has been dfficult to implement in
pradice

There is ancther approadch —Algorithms-first— that recommends using pseudo-code instead of
aparticular language but it is as oppcsed to a Hardware-first approac.

For amore detail ed discusson onthese gpproaches e[8, pgs 28 and foll owing]

To add to this lately web programming has appeaed for some as a separate aea in
programming. However this sam to recognized the need for Programming Fundamentals as a base
to buld the spedfic knowledge to be aleto program web appli cations using some of the languages
that have grown ou of the need for programming web appli cations

2.3 How to Teach Programming

From textbooks —of which there is a plethora, to creaing spedal leaning environments [2, 3,
4], to just plain amusement —some may even considered ‘serious’ amusement [5], thereis alot to

Péagina 184

JEITICS 2005 - Primeras Jornadas de Educacion en Informética y TICS en Argentina

choose from when deciding how to teach programming.

Here we are confronted by those that insist that programming must be taught using examples
and particularly using interactive media on a computer on a hands-on approach and those that insist
on teaching the theoretical fundamentals of programming leaving the practice using a particular
language for when the students have mastered the theoretical fundamentals of programming.

2.4 When to Teach Programming

Meaning at which level. Do we teach programming: (&) in secondary school, (b) at university
level, (c) for students doing something else that have nothing to do with Computer Science?

Some authors believe that Programming can be a good methodology to teach problem solving
(see section 2.1, above) and so they include programming in the secondary school curricula. It is not
clear whether teaching programming develops problem-solving skills or whether those skills are
necessary to learn programming.

On the university level, does Programming have to be taught early on in Computing Curricula
or the introductory curriculum has to have a wider base and programming must be taught as a more
advanced course?

The programming-first approach that was —and still mainly is— the traditional historical
approach to the introductory curriculum in Computing has had many objections (see [8, p.22, and
following] for more on this), however it is recognized that “the programming -first model islikely to
remain dominant for the foreseeable future.” 8, p.24]

Is it convenient for students of other disciplines that have nothing to do with Computing
Science to learn programming? Are they ever going to program anything or just used packaged
software? Lately these questions seem to have been answered in the negative. Students of other
disciplines do not need to learn programming since it is very unlikely that they will ever have a
need for it.

3 Conclusion

We have presented here a few of the issues in Teaching Programming, mostly in the form of
guestions with in some cases some suggested answers. We do not think that this covers the whole
field nor that ii provides a closure to the subject.

On the contrary we truly expect to continue the study and discussion on the field and hope
that the present paper can serve that purpose.

References

1. Joint Task Force for Computing Curricula 2004, “Computing Curricula 2004, Overview
Report including A Guide to Undergraduate Degree Programs in Computing”. The
Association for Computing (ACM), The Association for Information Systems (AlS), The
Computer Society (IEEE-CS), November 22, 2004.

2. Victor Adamchik, Ananda Gunawardena, “A Learning Objects Approach to Teaching
Programming”. Carnegie Mellon University.

3. Peter Van Roy, “A concepts-based approach for teaching programming”. SIGCSE 2004.

Ray Kemp and Ben du Boulay (Chairs), “Innovations in Teaching Programming”. VOLUME
VIl OF AIED2003 SUPPLEMENTARY PROCEEDINGS. 11th International Conference on

Péagina 185

10.

11.

12.

13.

14.

JEITICS 2005 - Primeras Jornadas de Educacion en Informética y TICS en Argentina

Artificia Intelligence in Education.

The following URL has some links to the different Esoteric Programming Languages:
http://en.wikipedia.org/wiki/Esoteric_programming_language

S. Pappert, “Mindstorms”.

G. Polya, “How to Solve it”. Second Edition. Doubleday Anchor Books. Doubleday & Co.
Inc. New York, 1957.

The Joint Task Force on Computing Curricula, IEEE Computer Society, Association for
Computing Machinery, “Computing Curricula 2001, Computer Science”. Final Report,
(December 15, 2001)

Peter Van Roy (Moder.), Joe Armstrong, Matthew Flatt, Boris Magnusson, “The Role of
Language Paradigms in Teaching Programming”. Panel in SIGCSE 2003, February 19-23,
2003, Reno, Nevada, USA.

R. Jernigan. B. W. Hamill. D. M. Weintraub, editors, “The Role of Language in Problem
Solving”. North Holland, Amsterdam, New Y ork, Oxford, 1985.

J. N. P. Hume, “A Guide to the PC-Turing Interpreter” dong with R. C. Holt and J. R. Cordy
“The Turing Language Report” and J. R. Cordy and T. C. N. Graham “Commands for Turing
Programming Environment”. Computer Systems Research Institute, University of Toronto,
Toronto, Canada, 1986.

Jacqueline L. Martin, “Is Turing a better language for teaching programming than Pascal?”,
Honours Dissertation, January 1996, University of Stirling, Department of Computing
Science. http://www.holtsoft.com/turing/essay.html

lan Joyner, “A Critique of C++”, Unisys ACUS, 115 Wicks Road, North Ryde, Australia,
1992.

Brian W. Kernighan, “Why Pascal is Not My Favorite Programming Language’. April 2,
1981, http://www.lysator.liu.se/c/bwk-on-pascal .html#owk

Péagina 186

