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In computer graphics one is often concerned with representing three-dimensional objects 
on a two-dimensional display surface. The choice of such a representation depends on 
several factors, including the purpose for which the representation is intended, the visual 
effects tha t  are desired, and the shape of the object. This paper describes how two- 
dimensional views can be obtained using planar geometric projections such as perspective 
and parallel projections. It  discusses how these projections can be generated from a three- 
dimensional representation of an object in a manner suitable for computer graphics systems. 
In particular, it shows how these projections can be generated using the viewing transfor- 
mations of the Core Graphics System. The factors tha t  affect the choice of projection are 
also discussed, and some guidelines for making such a choice are given. 
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INTRODUCTION 

In computer graphics one is often con- 
cerned with representing three-dimensional 
objects on a two-dimensional display sur- 
face. Such a representation may attempt 
either to show the general appearance of an 
object, as in a photograph, or to depict the 
object so that its metric properties such as 
distances and angles can easily be derived. 
These methods of representation, as well as 
the representations themselves, are known 
as projections. 

To produce a two-dimensional view of an 
object, each point of the object must be 
mapped onto a plane. The kind of mapping 
that is used distinguishes the types of pro- 
jection and the resulting visual effects. This 
paper describes how two-dimensional pro- 
jections can be generated from a three-di- 

mensional representation of an object, and 
discusses the visual advantages and disad- 
vantages of the various types ef  projections. 
This paper also illustrates how these pro- 
jections can be generated with the viewing 
transformations in the Core Graphics Sys- 
tem [GSPC77, BERG78]. 

The projections treated in this paper are 
known as planar geometric projections. A 
planar geometric projection of an object is 
obtained by passing lines called projectors, 
one through each point of the object, and 
finding the image formed by the intersec- 
tions of these projectors with a plane of 
projection. The projectors emanate from a 
single point called the center of projection. 
When this point is finite, a perspective pro- 
jection is obtained. When it is at infinity, 
that is, when the projectors are all parallel, 
a parallel projection is obtained. A perspec- 
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rive projection illustrates the general ap- 
pearance of an Object as it would be seen 
by the eye, whereas a parallel projection 
primarily attempts to represent its metric 
properties. This paper discusses both per- 
spective and parallel projections with their 
subclassifications. The Core Graphics Sys- 
tem was designed to provide a set of viewing 
functions that can generate all planar geo- 
metric projections. 

There are many types of projections that 
are beyond the scope of this paper. The 
projection of an object can be obtained by 
a method that does not use straight line 
projectors or that does not use a plane as a 
projection surface. By proper choice of pro- 
jections, it is possible to preserve properties 
that are generally not preserved by planar 
geometric projections, such as shape, scale, 
and area. Non-planar and non-geometric 
projections are used extensively in cartog- 
raphy; for a discussion of these projections, 
the reader is referred to literature on map 
projections [KELL49, RmH72, STEE48]. 

The principles of planar geometric pro- 
jections (hereafter referred to as projec- 
tions) are found in descriptive geometry. 
This branch of geometry and its applica- 
tions in engineering and architectural de- 
sign are concerned both with drawing 
mathematically exact representations of 
objects, and with the properties of these 
two-dimensional representations. Projec- 
tive geometry provides the theoretical basis 
for descriptive geometry and deals with 
those properties of objects that are invari- 
ant under projective transformations. 

This paper discusses the methods of pro- 
jection not in terms of two-dimensional 
drawing, but in terms of the position of the 
projection plane and the center of projec- 
tion. It describes how these parameters de- 
termine the type of projection, and how 
they relate to the mathematical and visual 
properties of the two-dimensional represen- 
tations. 

For any given projection type, there are 
two approaches to obtaining a desired view 
of an object. One is to transform the object; 
the other is to choose new projection 
planes. The first approach is to use a fixed 
center of projection and projection plane, 
and to position the object to get the desired 
view. The second approach is to leave the 
object stationary and to choose the center 
of projection and projection plane so that 
the desired view is obtained. Although the 
first approach was long prevalent in de- 
scriptive geometry and its applications and 
has been used by most computer graphics 
systems, this paper uses the method of 
choosing projection planes. The methods 
are mathematically equivalent, but the 
method of choosing projection planes is 
better adapted to the approach taken by 
some computer graphics systems, including 
the synthetic camera approach of the Core 
Graphics System [NEWM78]. 

The choice of projection used to illustrate 
an object depends on a number of factors, 
including the purpose for which the repre- 
sentation is intended, the visual effects that 
are desired, and the shape of the object. 
This paper explains how these factors affect 
the choice of projection type and provides 
some guidelines for creating pleasing visual 

• effects with each type of projection. 
The first section below presents a short 
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FIGURE 1-1. Plan view of building, part of statue of Gudea, from Lagash, Mesopotamia, c. 2150 B.C. (Ernest 
de Sarzec, D~couvertes en Chald~e, 1891, Sterling Memorial Library, Yale University.) 

history of the use of perspective and paral- 
lel projections in art, architecture, and 
engineering. The next section briefly intro- 
duces these projections and their subclas- 
sifications, and illustrates their use in 
current practice. In Section 3 the mathe- 
matical framework of the projections is de- 
veloped, and their visual advantages and 
disadvantages are discussed. Section 4 in- 
troduces some viewing capabilities of the 
Core Graphics System and the use of these 
capabilities to specify the various types of 
projections. The Appendix contains math- 
ematical derivations of the conditions that 
determine the different types of projections 
and some programming examples using the 
Core Graphics System, and illustrates a 
simple, straightforward way to implement 
the projections using homogeneous coordi- 
nate transformations. 

1. HISTORY OF PROJECTIONS 1 

It is surmised that drawings have been used 
since early historic times to represent ob- 
jects which were to be constructed. Al- 
though no traces of these drawings are 
available today, it is not likely that early 

J This section uses some terminology which is not 
defined until later sections. 

man could have built as accurately as he 
did without the use of fairly accurate draw- 
ings. The earliest known technical drawing 
in existence is that of a plan view of a 
building from about 2150 B.C. It is engraved 
on a stone tablet that is part of a statue 
representing Gudea, king of the city of La- 
gash in Mesopotamia: The engraving (Fig- 
ure 1-1) is similar in form to the plan draw- 
ings used by architects today. 

According to literary allusions, Greek 
painters and geometers during classical an- 
tiquity were acquainted with the laws of 
perspective. The painter Agatharchus (5th 
century B.C.) was the first to use perspec- 
tive on a large scale. (Vases from as early 
as the late 6th century B.C. show isolated 
instances of its use.) Agatharchus wrote a 
book on "scene painting" which inspired 
the philosophers Anaxagoras and Democri- 
tus to write on perspective. During the 3rd 
century B.C., Euclid, Archimedes, and 
Apollonius studied the conic sections. 
Whereas Euclid and Archimedes investi- 
gated the metric properties of the conic 
sections, ApoUonius studied those proper- 
ties shared by all sections of a given cone. 
These properties, unlike the metric prop- 
erties, are invariant under projective trans- 
formations. Apollonins' work provided the 
foundation for later work in projective ge- 
ometry. 
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FIGURE 1-2. Duccio di Buoninsegna, The Last Supper, Opera del Duomo, Siena, fresco, c. 1308, (Alinari/ 
Editorial Photocolor Archives). 

The first evidence of the use of drawings 
to guide construction work is found in the 
writings of Vitruvius, an architect and en- 
gineer in Rome under Julius Caesar and 
Augustus. About 14 B.C., he wrote De Ar- 
chitectura, which was intended as a com- 
plete guide for architects and engineers. 
Vitruvius discussed plan and elevation 
drawings of buildings and defined a per- 
spective as a drawing where "the lines aH 
meet at the center of a circle." Unfortu- 
nately, the illustrations that  accompanied 
this work have been lost. 

Although Greek artists had investigated 
the laws of perspective, these techniques 
were apparently not formalized until the 
beginning of the Renaissance. During me- 
dieval times, art was highly symbolic, gen- 
erally illustrating religious events. Paint- 
ings from this time rarely give a sense of 
depth; people and objects seem two-dimen- 
sional. A green or brown line was used to 
indicate the ground, and objects farther 
away were depicted with horizontal or ver- 
tical displacements. About the beginning of 
the 14th century artists again began to take 

an interest in representing the real world in 
their works. Duccio (1255-1319) and Giotto 
(1276-1336) made efforts at illustrating the 
third dimension using perspective. In 
Duccio's The Las t  Supper (Figure 1-2), the 
receding walls and ceiling lines are fore- 
shortened to suggest depth. 

During the 15th century, artists, many 
of whom were also able mathematicians, 
realized that  perspective could be explained 
in terms of geometry. The first artist to 
develop a mathematical system for per- 
spective was Filippo Brunelleschi (1377- 
1446). The first treatise on perspective, 
Della Pittura, was published in 1435 by 
Leone Battista Alberti (1404-1472). Al- 
though Euclid, in Optica, had already de- 
scribed the system of vision as a cone or 
pyramid of visual rays emanating from the 
eye to an object, Alberti was the first to 
define a painting as a cross section of this 
visual pyramid. In his work, Alberti de- 
scribes a method of drawing perspective, 
known as the focused system, by which an 
artist constructs a painting on a perspective 
grid. 
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The techniques of perspective were fur- 
ther developed during the 15th century, 
most notably by Piero della Francesca 
(1420-1492) and Leonardo da Vinci 
{1452-1519). In his text, De Prospettiva 
Pingendi, Piero extended Alberti's work 
and described a method of constructing per- 
spective from a top and a front view of an 
object. One of Piero's most famous paint- 
ings, The Resurrection (Figure 1-3), is an 
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interesting study of :perspective--it has 
been painted from two points of view, one 
opposite the center of the sarcophagus, the 
other opposite the face of Jesus Christ. The 
reader will notice that his attention is 
drawn alternately to the sarcophagus and 
to the face of Christ. e 

One of Leonardo's most  famous paint- 

2 This phenomenon is discussed further in Section 3. 

FIGURE 1-3. Piero della Francesca, The Resurrection, Pinacoteca Civica, San Sepolcro, fresco, c. 1460, 
(Alinari/Editorial Photocolor Archives). 

Computing Surveys~ Vol. 10, No. 4, December 1978 
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FIGURE 1-4. Engraving of Leonardo da Vinci's fresco, The Last Supper, Santa Maria delle Grazie, Milan, 
c. 1495-1498, (The Bet tmann Archive). 

ings, The Last  Supper (Figure 1-4), is a 
perfect study of perspective. A comparison 
with Duccio's painting of the same name 
clearly demonstrates the development of 
the science of perspective during the 15th 
century. Although Duccio's work has some 
suggestion of depth, Leonardo gives the 
viewer a feeling of actually being in the 
room, watching a scene from real life. 

The most widely read treatise on per- 

spective from this time was written not by 
one of the Italian masters, but  by a German, 
Albrecht Dfirer (1471-1528). In his work, 
Unterweysung der Messung mit  dem Zyr- 
kel und Rychtscheyd, Diirer describes both 
mathematical and mechanical methods for 
drawing perspective. One of the mechanical 
methods for constructing a perspective 
view of an object is illustrated in his wood- 
cut, Artist  Drawing a Lute (Figure 1-5). 

FIGURE 1-5. Albrecht Diirer, Artist Drawing a Lute, woodcut from Unterweysung der Messung mit dem 
Zyrkel und Rychtscheyd, 1525, (The Metropolitan Museum of Art, Harris Brisbane Dick Fund, 1941). 
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Although it is believed that Diirer was fa- 
miliar with the existing Renaissance texts 
on perspective, it seems he failed to under- 
stand the known methods of perspective 
drawing [IvIN75]. This is particularly evi- 
dent in his copper engraving, St. Jerome in 
His Study (Figure 1-6). The choice of the 
principal vanishing point to the far right 
and the "wide angle" effect caused by 
choosing the station point very close to the 
room give a noticeably distorted view. 3 

The theory of perspective was further 
investigated by the French architect, engi- 

3 These types of distortion are discussed further in 
Section 3. 
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neer, and mathematician Gerard Desargues 
(1593-1662). In 1639, Desargues published 
a treatise on the conic sections, which laid 
the foundation for the study of projective 
geometry. His work was, however, ignored 
by his contemporaries, and all printed cop- 
ies of his work were lost. 

Multiview orthographic projections had 
been used during the Middle Ages by ar- 
chitects and during the Renaissance by art- 
ists as an aid in constructing perspective. 
The application of these projections to en- 
gineering drawing was first made in an or- 
ganized fashion b y  Gaspard Monge 
(1746-1818), who is considered the "father 
of descriptive geometry." Monge developed 

FIGURE 1-6. Albrecht Ddrer, St. Jerome in His Study, engraving, 1514, (The Metropolitan Museum of Art, 
Fletcher Fund, 1919). 

! • - . 
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his principles for the geometrical solution 
of spatial problems in 1765 while working 
as a draftsman of military fortifications. His 
solutions were at first regarded with disbe- 
lief, but were later guarded as a French 
military secret. Monge eventually became 
a professor of mathematics at rEcole Po- 
lytechnique and made his system of de- 
scriptive geometry public in his lecture 
notes, Lemons de Gbometrie Descriptive, in 
1795 and in his textbook, Gbometrie De- 
scriptive, first published in 1801. One of 
Monge's students, Jean Victor Poncelet 
(1788-1867), revived the study of projective 
geometry, which became an individual 
branch of mathematics that attracted many 
able mathematicians during the 19th cen- 
tury. 

Monge's principles were introduced into 
the United States by another of his stu- 
dents, Claude Crozet, who began to teach 
descriptive geometry at West Point in 1816. 
His treatise on the subject was published in 
1821. In 1826, Crozet's successor at the mil- 
itary academy, Charles Davies, published 
the first extensive work in the US on de- 
scriptive geometry. In 1864, Albert Church, 
who had succeeded Davies, published his 
famous text, Elements of  Descriptive Ge- 
ometry, the leading textbook on the subject 
in this country through the first decade of 
the 20th century. 4 

2. APPLICATIONS OF PROJECTIONS 

This section briefly introduces the different 
types of projections according to their ad- 
vantages and disadvantages for various ap- 
plications. These applications range from 
layout drawings used in design, through. 
working drawings for production, to presen- 
tation drawings of finished products. Draw- 
ings are used by architects to show the 
appearance of proposed buildings, by engi- 
neers to describe structures and machine 
parts, by designers to present proposed 
products, and by commercial artists to il- 
lustrate objects in catalogs and advertise- 
ments. This section discusses the visual 
effects of the projections; the following sec- 
tion describes the methods for generating 

4 The reader is referred to the bibliography for these 
references and for several 20th-century texts on de- 
scriptive geometry, engineering drawing, and architec- 
tural drawing. 

the various types of projections and illus- 
trates how these methods of projection de- 
termine the characteristics of the resulting 
two-dimensional representations. 

The choice of a projection to represent a 
three-dimensional object in a flat drawing 
is determined by the purpose for which the 
representation is intended. This purpose is 
usually a compromise between the conflict- 
ing goals of illustrating the general appear- 
ance of an object, i.e., as it appears to the 
eye from some desired position, and that of 
clearly indicating the shape and measure- 
ments of the object. Another traditional 
consideration in choosing a projection is 
the ease with which a draftsman can con- 
struct the drawing. This is no longer a 
concern if the projection is generated by a 
computer system. 

In general, the interpretation of the pro- 
jection of an object depends on the training 
of the observer, on the type and amount of 
information about the object that is pre- 
sented, and on the complexity of the object. 
For example, an orthographic projection 
shows the exact shape of one face of an 
object and is easy to draw. However, such 
a projection usually requires more than one 
view to represent the whole object and a 
great deal of experience is necessary to 
visualize its three-dimensional shape. Be- 
cause this method of representation usually 
requires more than one view, it is referred 
to as a multiview orthographic projection. 
Perspective projection, on the other hand, 
provides the most realistic representation 
of an object and the Observer can easily 
visualize the three-dimensional shape of the 
object. However, a perspective projection is 
the most difficult drawing to construct, and 
different parts of the object are represented 
at different scales. Axonometric and 
oblique projections combine the pictorial 
advantages of perspective with the advan- 
tage of illustrating some principal measure- 
ments to scale. 

2.1 Multiview Orthographic Projections 

A multiview ~ orthographic drawing shows 
the exact shape of two or more faces of an 
object. The number of views required to 
adequately describe the dimensions of an 
object depends on the complexity of its 
shape. A simple symmetrical object with 
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FIGURE 2-1. Multiview orthographic projection: plan, elevations, and section of a building. 

rectangular faces can often be described in 
only two views. A more complicated object 
with inclined faces will need more. Objects 
with complicated internal detail may re- 
quire one or more sectional views. Figure 
2-1 illustrates a plan, a section, and a front 
and side elevation of a building. 

Multiview orthographic projections are• 
presented with the hidden lines either en- 
tirely omitted, or indicated as dashed lines. 
If the hidden lines are included, the infor- 
mation content of each view is increased, 
and fewer views are required. In Figure 2-1 
the hidden lines are omitted, whereas in 
Figure 3-2a they are included. 

Multiview orthographic projections are 
used for engineering drawings of machines 
and machine parts and for architectural 
working drawings of buildings. 

FIGURE 2-2. Axonometric projection is well suited 
for objects with mostly rectangular shapes. 

sents an object so that  three adjacent faces 
are visible, in  order to get a three-dimen- 
sional representation in one view. Such 
projections are particularly well suited to 
illustrate objects composed mostly of rec- 
tangular shapes (see Figure 2-2). 

2.2 Axonometric Projections 

An axonometric projection usually repre- 
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Although axonometric projections illus- 
trate the three-dimensional shape of an ob- 
ject, axonometric views often seem dis- 
totted. This happens because more distant 
parts of an object are represented at the 
same scale as are close ones and the true 
shape of an object is rarely shown in these 
projections. For example, right angles are 
generally not represented as right angles, 
and circles are usually represented as el- 
lipses. This is illustrated in Figure 2-3. 

object are parallel in the drawing, but  give 
the observer the illusion of divergence. This 
is illustrated in Figure 2-5. 

FIGURE 2-3. Axonometric projection. Circles usually 
appear as ellipses. 

Axonometric projections are used in cat- 
alog illustrations, Patent  Office records, 
piping diagrams, furniture design, machine 
design, and structural design. 

2.3 Oblique Projections 

An oblique projection has almost the same 
range of applications as an axonometric 
representation. However, while axonomet- 
tic projections are primarily used for rec- 
tangular objects, oblique projections are 
also well suited for objects with cylindrical 
shapes. Oblique projections combine prop- 
erties of orthographic projections with 
those of axonometric projections. An 
oblique projection provides the exact shape 
of one face of an object, and illustrates two 
adjacent faces in order to give a three- 
dimensional representation in one view. 
Thus, an oblique projection is particularly 
suited for objects with much detail or irreg- 
ular shapes on one principal face, as is 
illustrated in Figure 2-4. 

Oblique projections produce distortions 
similar to those of axonometric projections. 
For example, receding parallel lines of the 

FIGURE 2-4. Oblique projection is well suited for ob- 
jects with detail on one face. 

FIGURE 2-5. Oblique projection. Receding parallel 
lines give the illusion of divergence. 

One common application of oblique pro- 
jection is the so-called plan oblique draw- 
ing, which is used to illustl ~te interior and 
exterior layouts of a building complex. Plan 
oblique drawings are also used in mapmak- 
ing, as is illustrated in Figure 2-6. 

FIGURE 2-6. Plan oblique projection of a city. 
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FIGURE 2-7. Perspective projection of a building. 

2.4 Perspective Projections 

A perspective projection represents an ob- 
ject as it would be seen by an observer 
positioned at a certain vantage point. An 
object appears smaller as its distance from 
the observer increases, and parallel lines of 
an object converge in the drawing. A per- 
spective view of the building in Figure 2-1 
is illustrated in Figure 2-7. 

Perspective projections are not suitable 
for working drawings because it is difficult 
to determine the exact shape and size of an 
object from a perspective view. These pro- 
jections are, however, widely used when- 
ever a realistic appearance of an object is 
desired, such as in advertising and for pre- 
sentation drawings in architectural, indus- 
trial, and engineering design. 

2.5 Summary 

Several different visual effects can be 
achieved with the projections discussed in 
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this section. In practice, two or more types 
of projections are often used to complement 
each other so that several pictorial effects 
can be combined in one presentation. One 
example would be a merchandising catalog, 
which may use both a multiview ortho- 
graphic projection and an axonometric pro- 
jection to illustrate a machine part. An- 
other example would be an architectural 
blueprint that may use a plan, a plan 
oblique, and a perspective view to describe 
a building. 

3. PLANAR GEOMETRIC PROJECTIONS 

This section describes how each type of 
planar geometric projection is obtained by 
the proper choice of a projection plane and 
a center of projection. The mathematical 
properties of each method of projection are 
discussed and related to the properties of 
the projected object. The derivations of 
these relationships can be found in the Ap- 
pendix; only the results are described in 
this section. 

Each type of projection provides a vari- 
ety of visual effects. The previous section 
briefly discussed each type from the point 
of view of its applicability. This section 
further elaborates on the tradeoffs between 
the different types of projections. It also 
provides some suggestions for obtaining the 
most pleasing views of an object with each 
type of projection. 

A projection, in this paper, denotes both 
a mapping of a three-dimensional space 
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FIGURE 3-1. Classification of projections. 
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FIGURE 3-2a. Pictorial effects of orthographic pro- 
jections. 

onto a two-dimensional subspace, called the 
projection plane, and the resulting image 
of applying such a mapping to an object. 
The planar image of an object in three- 

dimensional space is found by passing a line 
through each point of the object and finding 
the intersections of these lines with the 
projection plane. These lines, the projec- 
tors, emanate from a single point called the 
center of projection. When the center of 
projection is at infinity, so that the projec- 
tors are all parallel, the projection is known 
as a parallel projection. When the center 
of projection is at a finite distance from the 
projection plane, a perspective projection 
results. Each of these two types has further 
subclassifications, which are illustrated dia- 
gramatically in Figure 3-1 and pictorially in 
Figure 3-2. 5, 6 

The classification of parallel projections 
is determined by the angle between the 
projectors and the projection plane. When 
the projectors are perpendicular to the pro- 
jection plane, the projection is ortho- 
graphic; otherwise, it is oblique. Ortho- 
graphic projections are represented either 
as multiview orthographic projections or 
axonometric projections. 

5 A multiview orthographic projection is not a projec- 
tion as defined above but is a collection of such pro- 
jections. However, multiview orthographic projections 
are treated as a class of projections in this paper in 
accordance with common practice. 

6 The hidden lines are indicated in the multiview or- 
thographic view. In all other illustrations in this sec- 
tion the hidden lines are omitted for presentational 
purposes. 

u: i 
cavalier 

/ 

J I 
cabinet 

FIGURE 3-2b. Pictorial effects of oblique projections. 
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jections. 

one-point 

two-point 

three-point 

Pictorial effects of perspective pro- 

Most objects can be thought of as having 
three principal perpendicular axes. 7 For 
convenience, the coordinate system is cho- 
sen to coincide with the principal directions 
of such an object. In the following discus- 
sion it is assumed that the coordinate sys- 
tem is chosen in this manner. Furthermore, 
in accordance with common practice, the 

7 For other objects, many distinctions between the 
projections discussed in this paper are no longer valid. 
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FIGURE 3-3. Projecting orthographically onto three 
of the six principal planes. 

two-dimensional images of the objects are 
positioned on the page with one principal 
axis as a vertical line. 

3.1 Multiview Orthographic Projections 

Multiview orthographic projections show, 
in one picture, two or more orthographic 
projections onto planes parallel to the prin- 
cipal planes. These projections are ar- 
ranged relative to each other in a specified 
manner. A way of creating a multiview or- 
thographic projection is to surround the 
object with six projection planes which 
form a rectangular box around the object, 
as shown in Figure 3-3. The six ortho- 
graphic projections are then "unfolded" 
and arranged as illustrated in Figure 3-4. 

1 
rear left side 

F I G U R E  3-4 .  

top 

front 

bottom 
Multiview orthographic projection. The six principal orthographic views. 

right side 

Comput!ng Surveys~ Vol. 10, No. 4, December 1978 

i "1 



478 . I. Carlbom and J. Paciorek 

Obviously, other arrangements of the six 
projections are possible, but  this one is the 
most commonly used. Of these six projec- 
tions, the top view is sometimes referred to 
as a plan, and the front and side views as 
front and side elevations. 

Six views are rarely needed. For example, 
a simple, symmetrical object may be com- 
pletely described by two or three views. 
The most common combination is top, 
front, and right side view. By convention 
each projection occupies a standard posi- 
tion relative to the others, no matter how 
many are used. 

The principal multiview orthographic 
projections are well suited to describe the 
shapes of objects that are essentially rec- 
tangular. However, auxiliary views are re- 
quired to describe the true shape of an 
object with faces inclined to the principal 
planes. Auxiliary views are orthographic 
projections onto planes inclined to the prin- 
cipal planes and parallel to the faces of 

FIGURE-3-5ai Projecting orthographically onto an 
auxiliary plane. 

, I " -  "/---2 

IOlllrOIHOI 
FIGURE 3-5b. Multiview orthographic projection 

consisting of two principal orthographic views and 
one auxiliary view. (Dashed lines indicate relation- 
ships of the three views.) 

interest. An auxiliary plane and the result- 
ing orthographic projection is illustrated in 
Figure 3-5. 

All the multiview projections discussed 
so far illustrate the exterior of an object. To 
represent objects with complicated interior 
detail, sectional views are used. A sectional 
view of an object is obtained by "cutting" 
the object with a plane, removing one part 
of the object, and projecting the remaining 
part orthographically onto the cutting 
plane. When the cutting plane is horizontal, 
the sectional view is generally referred to as 
a plan; when it is vertical, the sectional 
view is called simply a section. A plan and 
a section are illustrated in Figure 2-1. (The 
arrows in the plan indicate the section line, 
i.e., the position of the cutting plane.) 

3.2 Axonometric Projections 

An axonometric projection is an ortho- 
graphic projection onto a single plane, 
where this plane is chosen in such a way 
that the general three-dimensional shape of 
an object is illustrated. It usually represents 
an object so that three adjacent faces are 
visible, but  the true shape and size of any 
of these faces are not shown unless the face 
is parallel to the projection plane. In an 
axonometric projection, parallel lines are 
equally foreshortened. In particular, ax- 
onometric projections produce uniform 
foreshortening along the projected princi- 
pal axes; thus, measurements can easily be 
made to scale along these axes. 

The axonometric projections are classi- 
fied according to the orientation of the pro- 
jection plane, i.e., the angles between the 
projection plane and the coordinate axes. If 
all three angles are equal, the projection is 
isometric; if only two angles are equal, the 
result is a dimetric projection. If all angles 
are different, the projection is trimetric. 

The type of axonometric projection de- 
termines the properties of the projected 
object, namely: 

1) the number of foreshortening ratios s 
of the principal coordinate axes that 
are equal, or 

2) the number of angles between the pro- 
jected coordinate axes that are equal. 

s The  foreshortening ratio of a line is its projected 
length divided by its true length. 
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Construction of an isometric projection. FIGURE 3-6a. 

Yp 

FIGURE 3-6b. Isometric projection resulting from 
the construction in Figure 3-6a. (Xp, yf and Zp are the 
projected coordinate axes.) 

The  mathemat ica l  equivalences between 
the orientat ion of the projection plane and 
these propert ies  are shown in Sect ion A.5 
of the Appendix. 

In an isometric projection all three coor- 
dinate axes are equally foreshortened, and 
the angles between the projected axes are 
all equal. To  obtain an isometric projection, 
the project ion plane must  intersect  all three 
coordinate axes at  the same angle. As is 
shown in Section A.4 of the Appendix, this 
means  tha t  the projection plane normal  
must  be parallel to one of the four lines 
±x  = ±y = ±z. Hence there  are only eight 
possible isometric views of an object. A 
cube, along with an isometric projection 
plane, the projectors, and the projected 
cube, is i l lustrated in Figure 3-6. 9 

In a dimetric projection only two coor- 
dinate axes are equally foreshortened,  and 

36 50' 
scale ratios 1:3/4 

FIGURE 3-7, 

1~6o50, 
scale ratios 3/4:1 

Dimetric projections of a cube. 

only two of the angles between the pxo- 
jected axes are equal. Two different dime- 
tric views of a cube are i l lustrated in Figure 
3-7.1° To  obtain a dimetric projection, the 
project ion plane must  intersect  two of the 
coordinate axes at  the same angle. As is 
shown in Sect ion A.4 of the Appendix, this 
means  tha t  the project ion plane normal  
must  be parallel to one of the six planes 
x = ±y, x = ±z, or y = ± z. By  moving the 
project ion plane normal  in one of these 
planes, the emphasis of the three  perpen- 
dicular faces of an object  can be varied. 

9 Figure 3-6a shows how an isometric projection is 
constructed. This figure is itself a trimetrie projection. 
The same is true for later figures which illustrate the 
construction of oblique and perspective projections. 
~0 The scale ratios are displayed in the figure rather 
than the foreshortening ratios. These ratios more 
clearly illustrate the relative sizes of the sides of the 
cubes. The scale ratios are derived by multiplying the 
foreshortening ratios by the same scalar. 
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FmURE 3-8. 
cube. 

isometric 4--- projection 

principal orthographic projection 

Sequence of dimetric projections of a 

This is illustrated in Figure 3-8. {Note that  
the middle view is an isometric projection 
and that  the last view is a principal ortho- 
graphic view.) 

A trimetric projection is the general form 
of axonometric projection. It produces dif- 
ferent foreshortening of the three coordi- 
nate axes, and none of the angles between 
the projected axes are equal. Four different 
trimetric projections of a cube are shown in 
Figure 3-9. 

The shape of an object determines the 
choice of a suitable axonometric represen- 
tation. In order to minimize distortion and 
provide the most realistic view, the largest 
area, or the area with the most detail, 
should be emphasized. An isometric projec- 
tion provides little freedom in choice of 
projection plane, and equal importance is 
given to all three principal faces, as is illus- 
trated by the bookcase in Figure 3-10a. The 

~ o 4 6  ' 

scale ratios 7/8:1:2/3 
FIGURE 3-9. 

~ o 1 4  ' 

scale ratios 1:3/4:7/8 
Trimetric projections of a cube. 

dimetric projection in Figure 3-10b has re- 
duced the top area of the bookcase, giving 
more emphasis to the front and side, 
whereas the dimetric projection in Figure 
3-10c has reduced the side area, giving more 
emphasis to the largest face of the bookcase 
in order to lessen the distortion of this face. 
A trimetric projection allows almost com- 
plete freedom in choice of projection plane, 
and, if the plane is properly chosen, gives 
the most realistic appearance. A trimetric 
view of the bookcase is illustrated in Figure 
3-10d. 

3.3 Oblique Projections 

Oblique projections combine properties of 
multiview orthographic and axonometric 
projections. A multiview orthographic pro- 
jection illustrates the exact shape of two or 
more faces of an object. Such a represen- 
tation has the disadvantage, however, that 
the three-dimensional shape of the object 
may be hard to visualize from the separate 
views. The axonometric projections de- 
scribe the general three-dimensional ap- 
pearance of an object in one view, but they 
rarely show the true shape of any face of 
an object, and measurements can be made 
to scale only in the directions of the pro- 
jected principal axes. An oblique projection 
usually presents the exact shape of one face 
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FIGURE 3-10a. Isometric projection of a bookcase. 

FIGURE 3-10C. Dimetric projection of a bookcase. 
The side face is reduced in size. 
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j r  

FIGURE 3-10b. Dimetric projection of a bookcase. 
The top face is reduced in size. 

FIGURE 3-10d. Trimetric projection of a bookcase. 

of an object, and at the same time illus- 
trates its general three-dimensional appear- 
ance. 

The orthographic projections are char- 
acterized by projectors that are perpendic- 
ular to the projection plane. These projec- 
tions are therefore completely determined 
by the orientation of the projection plane. 
An oblique projection is characterized by 
projectors that are at an oblique angle to 
the projection plane and is determined by: 

1) the orientation of the projection 
plane, 

2) the angle between the projectors and 
the projection plane, and 

3) the orientation of the projectors about 
the projection plane normal. 

The projection plane of an oblique pro- 
jection is usually positioned parallel either 
to the largest principal face of the object or 
to the principal face with most detail, so 
that this face is projected without distor- 

tion. The projectors are chosen to best il- 
lustrate the third dimension. 

An oblique projection is classified by the 
angle between the projectors and the pro- 
jection plane. If the angle is 45 ° the projec- 
tion is cavalier; if the angle is arccot(V2), 
which is approximately 64 °, the result is a 
cabinet projection. The angle between the 
projectors and the projection plane deter- 
mines the foreshortening ratio, of lines per- 
pendicular to the projection plane. A cava- 
lier projection results in perpendiculars pro- 
jected at full scale, i.e., without foreshorten- 
ing, whereas a cabinet projection gives 
foreshortening of one-half. The mathemat- 
ical relationships between the  angle and the 
foreshortening ratios are illustrated in Sec- 
tion A.6 of the Appendix. A cube, the pro- 
jection plane, the projectors, and the pro- 
jected cube are illustrated in Figure 3-11. 

The choice of projectors determines how 
realistically the third dimension is repre- 
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y 

Droiection 

j Z 

k x 

FIGURE 3-11a. Construction of an oblique projection. 

Yp 

T Zp 

Xp 

FIGURE 3-11b. Oblique projection resulting from the 
construction in Figure 3-11a. (Xp, yp and zp are the 
projected coordinate axes.) 

sented. The angle between the projectors 
and the projection plane determines the 
"thickness" of the projected object, and the 
orientation of the projectors with respect to 
the projection plane normal determines the 
relative emphasis of the receding planes. 

The proportions of a cavalier projection 
often seem distorted--objects appear too 
thick. Similarly, objects represented by a 
cabinet projection sometimes seem !too 
thin. These projections are used for ease of 
measurement, but  foreshortening ratios of 
2/3 or 3A may give more pleasing views. Fig- 
ure 3-12 illustrates a cube projected with 
foreshortening of one, three-fourths, two- 
thirds, and one-half, respectively. 

The proportions of an oblique view can 
also be varied by changing the orientation 

1 1 1 1 

FIGURE 3-12. Oblique projections of a cube. The foreshortening ratio varies with the angle between the 
projectors and the projection plane. 
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FIGURE 3-13. Elevation oblique projections of a 
cube. The vertical face is shown at true shape, and 
the relative emphasis of the receding faces varies 
with the orientation of the projectors. 
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of the projectors. One of the receding planes 
can be emphasized and the other de-em~ 
phasized. This is demonstrated in Figures 
3-13 and 3-14. Figure 3-13 illustrates eleva- 
tion oblique, i.e., with the vertical faces 
shown at true shape. Figure 3-14 illustrates 
plan oblique, in which the horizontal faces 
of the cubes are represented a t  true shape. 

A projector is best defined with respect 
to a coordinate system with two axes in the 
projection plane and the third along the 
projection plane normal. The angle be- 
tween the projector and the projection 
plane and the angle of rotation of the pro- 
jector about the normal are two spherical 
coordinates of the projector with respect to 
this coordinate system. This relationship is 
illustrated in Section A.6 of the Appendix. 
For cavalier and cabinet projections a ro- 
tation of the projector about the normal is 
often chosen such tha t  the projection plane 
normal is projected a t  30 ° or 45 ° with re- 
spect to the horizontally projected coordi- 
nate axis. (One way of defining this coor- 
dinate system is shown in Section 4.) 

FIGURE 3-14. Plan oblique projections of a cube. The horizontal face is shown at true shape, and the relative 
emphasis of the receding faces varies with the orientation of the projectors. 
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FIGURE 3-15. a) Oblique projection chosen accord- 
ing to rule 1. b) Oblique projection chosen in viola- 
tion of rule 1. 

f 
f l  

FIGURE 3-16. a) Oblique projection chosen accord- 
ing to rule 2. b) Oblique projection chosen in viola- 
tion of rule 2, 

FIGURE 3-17. Oblique projections showing that rule 
I should take precedence over rule 2. 

The shape of an object determines how 
to choose the projection plane for an 
oblique projection. In order to minimize 
distortion and to provide a more realistic 
appearance, the projection plane should be 
chosen so that: 

1) it is parallel to the most irregular of 
the principal faces or to the one which 
contains circular or curved surfaces; 
o r  

2) it is parallel to the longest principal 
face of the object. 

The projection in Figure 3-15a gives a 
less distorted view than that in Figure 3- 
15b. Similarly, the projection in Figure 3- 
16a seems less distorted than that in Figure 
3-16b. When these rules conflict the first 
should generally prevail over the second, as 
is illustrated in Figure 3-17. 

3.4 Perspective Projections 

A perspective projection gives a natural 
appearance of an object as seen by the eye. 
However, such a projection does not pre- 
serve the shape of an object, and measure- 
ments can be made to scale only in the 
parts of the object that lie in the projection 
plane. 

A perspective projection is distinguished 
from a parallel projection by: 

1) convergence of parallel lines, 
2) diminution of size, and 
3) nonuniform foreshortening. 
Only lines parallel to the projection plane 

remain parallel in a perspective view. Par- 
allel lines that  are not parallel to the pro- 
jection plane converge to a single point, 
called a vanishing point. The vanishing 
point for a set of parallel lines is the point 
where a line through the center of projec- 
tion, parallel to the set of parallel lines, 
intersects the projection plane. A principal 
vanishing point is a vanishing point of a 
principal axis. Vanishing points for lines 
parallel to a plane always lie along a 
straight line in the projection plane. When 
this line appears horizontal to the observer, 

vanishing vanishing 
point , point 

projection ~ 

horizon i i ~  

vanishin ~ -~ ~ I.~;t~ , I / / f  vanishing 

FIGURE 3-18. Plan view of perspective construction 
and the resulting perspective projection. 
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FmURE 3-19. Perspective projection. Diminution. 
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it is referred to as the horizon line. The top 
half of Figure 3-18 is a plan view of an 
object, a projection plane, the center of 
projection, and the projectors. The bottom 
half illustrates the corresponding perspec- 
tive view of the object, the vanishing points, 
and the horizon line. 

The convergence of parallel lines results 
in both diminution of size and in nonuni- 
form foreshortening of objects. Objects of 
equal size appear smaller as their distance 
from an observer increases and become 
larger as that distance decreases. Only 
areas in the projection plane retain their 

true size. Figure 3-19 illustrates the dimi- 
nution of equal-sized objects when they are 
placed farther away from the observer. 

The shape of an object is rarely preserved 
under a perspective projection. Parallel 
fines are unequally foreshortened depend- 
ing on their position relative to the ob- 
server. Circles generally project to ellipses. 
Only the parts of an object parallel to the 
projection plane retain their shape. Non- 
uniform foreshortening of parallel lines and 
circles is illustrated in Figure 3-20. 

A perspective projection of an object is 
determined by five variables: 

F I G U R E  3 - 2 0 .  
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Perspective projection. Non-uniform foreshortening. 
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center of 
projection 

Yp 

• zp 

1. a) Construction of a one-point per- 
)rojection. b) One-point perspective pro- 
suiting from the construction in a). (xp, yp 
the projected coordinate axes.) 

(b) 
Xp 

1) the orientation of the projection plane 
with respect to the object (i.e., the 
angles between the projection plane 
and the principal coordinate axes), 

2) the height of the center of projection 
with respect to the object (i.e., the 
position of the horizon line with re- 
spect to the object), 

3) the distance of the center of projection 
to the object, 

4) the distance of the projection plane to 
the object, and 

5) the horizontal displacement of the 
center of projection relative to the 
center of the object. 

The values of these five variables are gen- 
erally chosen so as to give the most realistic 
appearance of the object. 

The perspective projections are classified 
according to the number of principal coor- 
dinate axes that intersect, but do not lie 
within, the projection plane. As is shown in 
Section A.7 of the Appendix, this is equal 
to the number of finite principal vanishing 
points. 

A one-point (or parallel) perspective pro- 
jection is the type of projection in which 
the projection plane intersects only one of 
the principal coordinate axes. Hence, to 
obtain a one-point perspective, the projec- 
tion plane must be parallel to one of the 
principal planes. A cube, along with the 
projection plane, the projectors, and the 
one-point perspective of the cube, is illus- 
trated in Figure 3-21. 

A two-point (or angular) perspective pro- 

jection is the type of projection where the 
projection plane intersects two of the prin- 
cipal coordinate axes. A two-point perspec- 
tive is obtained by choosing the projection 
plane parallel to one of the principal axes, 
but not parallel to any coordinate plane. A 
two-point perspective of a cube is illus- 
trated in Figure 3-22. 

FIGURE 3-22. Two-point perspective projection. 

A three-point perspective projection is 
the type of projection where the projection 
plane intersects all of the coordinate axes. 
A three-point perspective is obtained by 
choosing the projection plane so that it is 
not parallel to any coordinate axis. A three- 
point perspective of a cube is illustrated in 
Figure 3-23. 

The five variables listed above control 
the pictorial effects of a perspective projec- 
tion, and if not chosen properly may pro- 
duce unpleasant distortions. If a perspec- 
tive projection is to illustrate an object as 
it is seen by an observer, the choice of 
station point 1~ and position of the projec- 
tion plane are fairly limited. Certain distor- 
tions are, however, at times acceptable or 
even desirable to obtain more interesting 

11 This term is commonly used in architectural drawing 
to indicate the position of the viewer, and is equivalent 
to the center of projection. 
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FIGURE 3-23. Three-point perspective projection. 
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and dramatic illustrations. The effects of 
these variables on the three types of per- 
spective are discussed below. 

In general, the station point should be 
selected at a position from which an object 
would be viewed "naturally." The distance 
from the station point to the object should 
be such that the object is well within the 
observer's field of view with the horizon 
line near the observer's eye level. The sta- 
tion point should not be displaced horizon- 
tally too far off-center, and it should be 
opposite the center of interest in the pic- 
ture. As was illustrated in Piero's Resurrec- 
tion (Figure 1-3}, the viewer's attention is 
naturally drawn to the area in the painting 
opposite the station points. (The reader 
should note that this painting is a study in 
one-point perspective. It was painted from 
two vantage points, and hence has two prin- 
cipal vanishing points.} 

In a one-point perspective, the projection 
plane is parallel to one of the major faces of 
the object, that is, the observer is looking 
straight at this face. A one-point perspec- 
tive has the advantage that it may show 
three adjacent vertical faces, one at true 
shape. A one-point perspective is used 
mostly for interior spaces, street scenes, 
and objects such as pieces of furniture. 

The orientation of the projection plane 
cannot be varied in a one-point perspective. 
The observer is always looking at one face, 
which gives a symmetric view that some- 
times appears dull and static. Moving the 
center of projection slightly off-center hor- 
izontally may produce a more interesting 
perspective. This situation is illustrated in 
Figure 3-24. One of the side walls is empha- 

sized more than the other, and the viewer's 
attention is naturally drawn to the center 
of interest, which is to the side of the center 

FIGURE 3-24. One-point perspective projection with 
station point off-center. 

F - l - - 1  
II tl I 

FIGURE 3-25. One-point perspective projection with 
station point too far off-center. 
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of projection. If the center of projection is 
moved too far off-center, an objectionable 
view may result, as is illustrated in Figure 
3-25. The distortion in Diirer's St. Jerome 
in His Study (Figure 1-6) is due mostly to 
this phenomenon. (A nonsymmetric view 
with heavy emphasis on one of the side 
walls would generally be better illustrated 
with two-point perspective.) 

Moving the horizon line up and down 
changes the proportions of ceiling and floor 
in an interior view (Figure 3-26), or shows 
the exterior view of a building as if it were 
seen from above or below (Figure 3-27). An 
indoor view should generally have the ho- 
rizon line at the eye-level of a sitting or 
standing observer. For exterior views a 
more interesting projection is often 

horizon near floor horizon centered horizon near ceiling 

FIGURE 3-26. One-point perspective projections of interior of a room with different heights of horizon line. 

horizon above building horizon centered horizon below building 

FIGURE 3-27. One-point perspective projections of exterior of a building with different heights of horizon line. 

station point close to room 

J 
station point at medium distance 

Ij ] 
station point far from room 

FIGURE 3-28. One-point perspective projections of interior of a room with different distances from station 
point to room. 

FIGURE 3-29. The distance from the plane to the station point affects only the size of a perspective projection. 
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achieved with the  horizon above or below 
the object. 

T h e  distance of the station point  to the 
object  determines  whether  it is viewed from 
far or near. When the station point  is too 
close to the object, the depth  in the projec- 
t ion seems exaggerated. If it is too far away 
from the object, the  projected object  seems 
flat. The  effect of distance is i l lustrated in 
Figure 3-28. The  station point  should be 
chosen at a distance from an object  at  
which an observer  would natural ly view the 
object, so as to include the entire object  in 
the field of vision. 

Figure 3-29 shows how moving the pro- 
ject ion plane with respect  to the stat ion 
point  scales the perspective projection uni- 
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formly. Zooming can lbe implemented  by  
slowly moving the project ion plane towards 
or away from the stat ion point. 

In a two-point  perspective the  project ion 
plane is parallel to one of  the major  axes of 
the object,  i.e., the  observer  is looking 
straight  at  one edge of  an object  but  not  
straight at  any of the  faces adjacent  to this 
edge. Unlike a one-point  perspective, a two- 
point  perspective does not  generally give a 
symmetr ic  view. For  this reason, it is more 
widely used. 

In a two-point  perspective, the orienta- 
t ion of the project ion plane with respect  to 
the object  can be varied so as to emphasize 
one vert ical  face or the other.  In Figure 3- 
30 the proport ions of the  left  and right side 

right wall emphasis equal wall emphasis left wall emphasis 

FIGURE 3-30. Two-point perspective projections with different orientations of projection plane and positions 
of station point. 

horizon above object horizon centered horizon below object 
FIGURE 3-31a. Two-point perspective projections with different heights of horizon line. 

station point close to object station point at 
medium distance 

FmURE 3-31b. 

station point far from object 

Two-point perspective projections with different distances from station point to object. 

projection plane projection plane 
far from object at medium distance 

FIGURE 3-31C. 

projection plane 
close to object 

Two-point perspective projections with different distances from projection plane to object. 
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station point at  natural distance 

/ 
station point too close 

FIGURE 3-32. Two-point perspective projections. 
Distortion of regular patterns. 

of an object are varied by changing the 
orientation of the projection plane. In each 
drawing the station point is located on a 
normal of the projection plane, through the 
vertical center of the object. As for a one- 
point perspective, the station point can be 
moved off-center horizontally to draw the 
viewer's attention to one side of the draw- 
ing. Care should be taken when positioning 
the station point off-center, since this may 
produce distortions whose cause is not as 
easily detectable as those for a one-point 
perspective. 

By varying the position of the horizon 
line, the distance from the station point to 
the object, and the position of the projec- 
tion plane relative to the object, effects 
similar to those described for one-point per- 
spective can be obtained. These variations 
are illustrated in Figure 3-31. 

As for one-point perspective, the station 
point should be chosen at a position from 
which an observer would naturally view the 
object. If the station point is too close to an 
object, unpleasant distortion can occur, 
particularly at the edges of the projected 
object. This is especially noticeable for ob- 

jects with regular shapes and with repeti- 
tive patterns as is illustrated in Figure 3-32. 
To avoid such distortions it is generally 
recommended that  the viewed object be 
within a 450-60 ° cone of vision. A station 
point close to an object can, however, some- 
times cause interesting effects. Although a 
person inside a room generally sees only 
what is within a narrow field of ~¢iew, he is 
conscious of objects in an almost 180 ° field 
of vision. Including objects outside the 60 ° 
cone of vision gives the viewer a feeling of 
being inside a room, rather than seeing it 
from a distance. This illusion is illustrated 
in Figure 3-33. 

In a three-point perspective, the projec- 
tion plane is inclined to all three principal 
faces of the viewed object. The effects are, 
for example, those seen by an observer 
looking up at a tall building, or looking 
down from its roof. Changes in the five 
variables result in changes to the three- 
point perspective that  are similar to, but 

right wall emphasis left wall emphasis 

FIGURE 3-34a. Three-point perspective projections 
of a building as seen from one side or the other. 

station point station point station point station point 
above building near top near bot tom below building 

FIGURE 3-34b. Three-point perspective projections 
of a building as seen from different heights. 

station point station point 
close to building far from building 

FIGURE 3-34C. Three-point perspective projections 
of a building as seen from different distances. 
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more dramatic than, those for both one- 
point and two-point perspective. 

The orientation of the projection plane 
determines both the proportions of the ver- 
tical faces and the rate at which vertical 
lines converge. Figures 3-34a and 3-34b il- 
lustrate the effects obtained by looking at 
an object from one side or another, and by 
looking at it from above or below, respec- 
tively. This is accomplished by rotating the 
projection plane vertically and horizontally, 
and keeping the station point on a projec- 
tion plane normal through the center of 
interest on the object. The effect obtained 
by changing the distance of the station 
point to the object is illustrated in Figure 
3-34c. 

4. SPECIFICATIONS OF VIEWING 
TRANSFORMATIONS IN A GRAPHICS 
SYSTEM 

A viewing transformation defines a map- 
ping of a three-dimensional object onto a 
two-dimensional display surface. In addi- 
tion to the specification of a projection, the 
viewing transformation also defines the 
portion of the object that is to be viewed 
and a mapping of the projected image to 
the display surface. This section will discuss 
a set of constructs that allows the specifi- 
cation of planar geometric projections in a 
graphics system. For a general discussion of 
viewing transformations the reader is re- 
ferred to NEWM73, GSPC77, and BERG78. 

Most contemporary graphics subroutine 
packages provide only limited capabilities 
for defining projections of three-dimen- 
sional objects. In order to get a desired 
view, the programmer must often rotate, 
translate, scale, and shear the object before 
mapping it to the projection plane. This 
section describes a set of constructs that is 
sufficiently general to specify a projection 
only in terms of a projection plane and a 
center of projection. This method of speci- 
fication is suitable for a general purpose 
graphics package because it allows consist- 
ent specifications of parallel and perspec- 
tive projections, and because few constructs 
are needed to specify a projection. 

There are alternate ways of defining 
planar geometric projections. For example, 
an orthographic projection could be speci- 

fied by the foreshortening ratios of the prin- 
cipal axes, and an oblique projection by the 
foreshortening ratios of the principal axes 
and the angle of the receding axis. A per- 
spective projection could be specified by 
the eye position of the viewer and the three 
principal vanishing points. These methods 
of specification are conceptually simpler for 
many applications. 

The constructs used in this section have 
equivalent viewing functions in the Core 
Graphics System. Section A.9 of the Ap- 
pendix briefly introduces these viewing 
functions and gives a few programming ex- 
amples. For a full discussion of the Core 
Graphics System, the reader is referred to 
GSPC77 and to BERG78. 

A projection plane can be defined by one 
point {here called the reference point) and 
a vector that  defines a normal of the plane. 
As will be seen below, it is sometimes con- 
venient to position the plane at a distance 
from the reference point. The projection 
plane is positioned perpendicular to the 
normal, at a specified distance from the 
reference point. 

The direction that is "up" in the projec- 
tion plane is specified by another vector. 
This vector and the projection plane nor- 
mal determine a new coordinate system 
referred to as the UV-system. The V-axis is 
the orthographic projection of the given 
vector in the projection plane; the U-axis is 
the cross-product of the projection plane 
normal with the V-axis. The V-axis will be 
vertical on the display surface, and the U- 
axis horizontal. 

The center of projection is defined by a 
vector. For a parallel projection, the center 
of projection is at infinity and the vector 
defines the direction of the projectors. For 
a perspective projection the vector defines 
the position of the center of projection rel- 
ative to the reference point. 

The remainder of this section gives some 
examples of how to position the center of 
projection and the projection plane to ob- 
tain various views of an object for each type 
of projection. In particular, it illustrates 
how these constructs are used to obtain 
certain desired foreshortening ratios for 
parallel projections, and to obtain a se- 
quence of perspective views of an object as 
it would be seen by a moving observer. 
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A parallel projection is orthographic 
when the projectors are normal to the pro- 
jection plane. Therefore, when the direction 
of the projectors is collinear with the pro- 
jection plane normal, an orthographic pro- 
jection results. Hence, an orthographic pro- 
jection is simply defined by the position of 
the projection plane. 12 For all parallel pro- 
jections it is often convenient to position 
this plane at the origin, that is, to position 
the reference point at the origin and to 
choose the distance to the plane equal to 
zero. 13 

A principal view of a multiview ortho- 
graphic projection is obtained by position- 
ing the projection plane parallel to one of 
the principal coordinate planes. This is ac- 
complished by specifying a projection plane 
normal perpendicular to one of these 
planes. Similarly, an auxiliary view is ob- 
tained by specifying a normal perpendicular 
to the face of the object that should be 
projected without distortion. 

An axonometric view is obtained by 
choosing a plane that is not parallel to any 
coordinate plane. As was illustrated in Sec- 
tion 3, an isometric projection is an axono- 
metric projection with the projection plane 
normal parallel to one of the fines ±x = ±y 
ffi ±z. Hence, if the absolute values of the 
components of the normal are all equal, an 
isometric projection is obtained. Similarly, 
if exactly two of the absolute values of the 
components of the normal are equal, a di- 
metric projection results. 

Given the foreshortening ratios of the 
principal axes, the direction of the projec- 
tion plane normal can easily be calculated. 
As is demonstrated in Section A.5 of the 
Appendix, the foreshortening ratio, l, is de- 
fined by 1 = cosO, where O is the angle 
between the coordinate axis and the projec- 
tion plane. But this angle is the complement 
of the angle between the normal and the 
coordinate axis. The direction of the normal 
can be defined by its direction cosines, (nl, 
n2, n3), where 

nl = cos(90 ° - O) = sinO. 

,2 As in the  previous section, it is a s s u m e d  tha t  the  
object  is or iented with its principal axes  along the  
principal  coordinate  axes. 
~3 Th i s  does not  take  into account  sectional  views and  
h idden  line processing.  
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The values for n2 and na are calculated in 
the same manner. 

The projection plane for an oblique pro- 
jection is chosen parallel to the face of the 
object that should be projected without 
distortion. The project ion direction is no 
longer collinear with the projection plane 
normal, but  at an angle to this normal. 

The projector is best defined with respect 
to the coordinate system defined by U, V, 
and the projection plane normal. As was 
discussed in the previous section, the angle 
between the projector and the projection 
plane and the angle of rotation of the pro- 
jector about the normal are two spherical 
coordinates of the projector with respect to 
this coordinate system. The Cartesian co- 
ordinates of the projectors can be calcu- 
lated from its spherical coordinates or from 
the foreshortening ratio, l, and the angle 7 
between the receding principal axis and the 
U-axis. As is demonstrated in Section A.6 
of the Appendix, the direction of the pro- 
jectors i's {/cosy,/siny,-1).  

A perspective projection is defined by a 
projection plane and a center of projection. 
The choice of reference point depends on 
the application. It can be chosen at the 
station point if, for example, one purpose of 
the application is to illustrate what is in a 
moving observer's field of view, The refer- 
ence point may also be chosen on or near 
the object. This makes it easy to alter the 
values of the five variables that determine 
the appearance of a perspective view. 

To create a one-point perspective projec- 
tion, the reference point can be chosen in 
the center of the face of the object that is 
to be parallel to the projection plane. The 
center of projection is easily determined so 
that the distance to the object insures that 
it is within a 450-60 ° cone of vision, that 
the horizon line is at the eye height of the 
observer, and that the horizontal displace- 
ment gives a desirable view. By varying 
only the position of the center of projection 
relative to the reference point, the visual 
effects can easily be changed. 

To create a two-point perspective, the 
reference point can be chosen on one ver- 
tical edge of the object. The projection 
plane normal will determine the relative 
emphasis between the two adjoining faces. 
The center of projection is determined, 
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much the same way as for one-point per- 
spective, to create a desired visual effect. 

The reference point may also be chosen 
at the eye-pont of the observer, i.e., at the 
center of projection. The projection plane 
normal is then defined by a vector from the 
eye-point to the center of interest on the 
object, and the projection plane at some 
given distance from the eye-point. By 
changing the reference point and the pro- 
jection plane normal, one can illustrate 
what is in the observer's field of view as he 
moves about. Note, however, that when the 
center of projection and the reference point 
coincide, the variables that determine a 
perspective view are not as easily modified, 
since the center of projection is positioned 
on the projection plane normal. 

CONCLUSION 

This paper has presented the planar geo- 
metric projections in a manner suitable for 
applications in computer graphics. The 
method of projection has been defined in 
terms of the position of the projection plane 
and the center of projection. The choice of 
projection plane and projectors has been 
related to the pictorial effects of the pro- 
jected object. A simple, straightforward 
way to implement the projections is pre- 
sented in the Appendix. 

There is no hard and fast rule for choos- 
ing one type of projection over another. 
This choice must be made accordng to the 
purpose for which the projection is to be 
used, according to the shape of the object, 
and according to the pictorial effects that 
are to be achieved. This paper provides 
some guidelines for making such a choice. 
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APPENDIX 

The first three sections of the Appendix 
introduce homogeneous coordinates, direc- 
tion cosines, and spherical coordinates 
--concepts that are used throughout the 
appendix. For a more complete treatment 

• of homogeneous coordinates, the reader is 
referred to NEWM73. Direction cosines and 

iii:(: : 

j J 

j J 

FIGURE A-1. Direction cosines. 

f f '  
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spherical coordinates are discussed in more 
detail in most college-level analytic geom- 
etry textbooks. 

Section A.4 derives the constraining 
equations for dimetric and isometric projec- 
tions in terms of the position of the projec- 
tion plane. Sections A.5, A.6, and A.7 show 
the relationships between the method of 
projection and the properties of the pro- 
jected objects for axonometric, oblique, and 
perspective projections, respectively. 

The planar geometric projections can be 
represented by a single 4 × 4 homogeneous 
matrix, and Section A.8 describes one pos: 
sible way of deriving this matrix. The final 
section gives some programming examples 
using the viewing functions in the Core 
Graphics System. 

A.1 Homogeneous Coordinates and Matrix 
Representations 

The homogeneous coordinate representa- 
tion of an object in 3D is a representation 
of that object in 4D together with a projec- 
tion from 4-space to 3-space. Any point 
(x,y,z) in 3D can be represented as (x,y,z,1) 
in 4D. Conversely, any point (x,y,z,w) with 
w ~ 0 in 4D represents the point (x/w, 
y/w,z/w) in 3D. Thus, all points (hx, 
hy,hz,hw), h ~ 0, on a line through the 
origin project to the same point in 3-space. 
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By representing a point by its homoge- 
neous coordinates, any planar geometric 
projection of this point onto a plane can be 
expressed as a single 4 × 4 matrix. As will 
be shown in Section A.8, this matrix can be 
derived by composing 4 x 4 matrices rep- 
resenting three-dimensional rotation, 
shearing, translation, and perspective 
transformations. Rotation and shearing are 
linear transformations in 3D and can be 
expressed as 3 x 3 matrices. Translation 
and perspective, however, can only be ex- 
pressed as 4 × 4 matrices. 

A general linear transformation in 3- 
space can be expressed as the 4 x 4 matrix 14 

I 
all a12 a13 !] 
a21 622 623 

• 1 a32 633 
0 0 

where a matrix [au] is a linear transforma- 
tion. More generally, in a 4 × 4 matrix of 
the form 

a i i  aiz a18 p/~il" 
a21 a22 a23 p2  

a31 a32 633 

t l  t2 ta 

14 Note that  a point is represented as a row vector 
which is post-multiplied by the matrices. 

i 
i 

J i 

jJ 

(pcosO p s n e  O) / 
' ' ~ : " : . : .  ! ::: : i:T~" 

I \ k  :.: :::::::::::::::::::::::: ~ ' " " ' ~ - ~ , . ~ ( x ,  y, z) ' 

x P) 

FIGURE A-2. Spherical coordinates. 

Z 
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[aij] represents a linear transformation of 3- 
space, [h, t2, ts] represents a translation, 
and [pl, p2, p3] represents a perspective 
transformation. 

A.2 Direction Cosines 

Direction cosines describe the direction of 
a vector in 3-space. They are the cosines of 
the angles between this vector and the 
three principal coordinate axes. (See Figure 
A-1.) The direction cosines for the vector 
O P  are (cos~, cosfl, cosT), where ~ is the 
angle between the vector and the positive 
x-axis, fl is the angle between the vector 
and the positive y-axis, and 7 is the angle 
between the vector and the positive z-axis. 
If the coordinates of the vector O P  in the 
figure are (x ,y ,z) ,  then: 

x 
COS~ 

J x  2 + :~ + z ~ 

cosfl = Y 
J x  ~ + 22 + z ~ 

z 
COS~ = 

~/X 2 + y2 + Z 2 

A.3 Spherical Coordinates 

A point in 3-space can be represented by 
three Cartesian coordinates (x ,y ,z)  with re- 
spect to the standard coordinate axes. It 
can also be represented by the spherical 
coordinates (p, O, 8), with p ~ 0, 0 _< # _< 
360 °, and 0 _< # _< 180 °. 

In Figure A-2, # is the angle between the 
vector (x,y,z)  and the positive z-axis, O is 
the angle between its orthographic projec- 
tion on the x y  plane and the positive x-axis, 
and p is the length of the vector. The equa- 
tions which relate these two representa- 
tions are: 

x = pcosOsin# 

y = psinOsin8 

z = pcos0 

h.4 Constraining Equations for Axonometric 
Projections 

The constraints on an axonometric projec- 
tion can be viewed as constraints on the 
direction cosines of the normal of the pro- 
jection plane. Recall that  the direction co- 
sines of this normal are the cosines of the 

angles between the normal and the princi- 
pal coordinate axes. 

A dimetric projection is defined by the 
condition that  two of the angles between 
the projection plane and the coordinate 
axes be equal. This is equivalent to the 
requirement that  the absolute values of two 
of the direction cosines for the normal be 
the same, i.e., 

Ixl lyl 
o r  

,/X 2 + y + z  ~ ,/x ~ + 2 2 + z  ~ 
Ixl Izl 

J~c2+y2+z  2 - ~ / x  2 + y 2 + z  2 or 

lyl  Izl 
j x  2 + y 2 + z  2 j x  2 + y + z  2 

This implies that  the normal of the projec- 
tion plane for a dimetric projection lies in 
a plane parallel to one of the six planes 
x = ±y, x = ±z, o ry  = ±z. 

u 

P 

I 

FIGURE A-3. 

An isometric projection is defined by the 
condition that  all three angles between the 
projection plane and the coordinate axes be 
equal. This is equivalent to the requirement 
that the absolute values of the direction 
cosines for the normal all be identical, i.e., 

IxJ JyJ 
j x  2 + y 2 + z  2 ,/x ~ + y + z  2 

Izl 
~/x 2 + y2 + z 2 

This implies that  the normal of the projec- 
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tion plane lies along a line parallel to one of 
• the lines ±x = ±y = ±z. 

A.5 Conditions That Determine an 
Axonometric Projection 

As discussed in Section 3, the type of an 
axonometric projection is determined by: 

1) the angles between the projection 
plane and the coordinate axes, or 

2) the foreshortening ratios of the three 
coordinate axes, or 

3) the angles between the three coordi- 
nate axes. 

This section shows that the orientation of 
the projection plane determines the prop- 
erties of the projected object, and con- 
versely that either of the properties 2) or 3) 
of the projected object determines the ori- 
entation of the projection plane. These re- 
lationships are proven by showing that: 

a) two coordinate axes intersect the pro- 
jection plane at the same angle if and 
only if their foreshortening ratios are 
the same, and 

b) two coordinate axes intersect the pro- 
jection plane at the same angle if and 
only if their projections intersect the 
projection of the third coordinate axis 
at the same angle. (This assumes that 
the projection plane is not parallel to 
one of the principal planes, -which 
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would give a deger~rate ~xonometric 
view, showing only one principal face 
of the object.) 

The first equivalence is easily established 
with the aid of Figure A-3. 

In this diagram, U is a unit vector, P is 
its projection, N is the unit normal to the 
projection plane, and / i s  the foreshortening 
ratio, that  is, the length of P. It is clear that 
l = cosO. 

If U1 and U2 are, two unit coordinate 
vectors, then 11 =/2  if and only if O1 = 02; 
hence a). 

To establish the second equivalence, 
write P = U -  NsinO. If Ui, U2, U3 are 
three principal unit coordinate vectors and 
P1, P2, P~ are their projections, we must 
show that the angle between P~ and P~ is 
equal to the angle between P2 and P3 if and 
only if O1 = 02. This is equivalent to show- 
ing that P1 .P3 ffi P~.P3 if and only if O1 = 
02 (where • denotes the scalar product). 
But 

L-P~ = (U1 - N s i n O 1 ) .  ( U s  - NsinOs) 

= U1. U 3 -  Ul.NsinO3 

- U ~ . N s i n 0 1  + s i n 0 1 s i n 0 z  

ffi cos90 ° - sinOlsin03 

- sinO~sin01 + sin01sin08 

ffi - s i n O l s i n 0 8 ,  

f 
J 

FIGURE A-4. 

S projectoIT 
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Hence cOSOlCOSO3COSfl ~- -sinOlsinO3 or 
cosfl ffi -tanOltanO3, where fl is the angle 
between P1 and Ps. Similarly, cosy ffi 
-tanO2tan03, where y is the angle between 
P2 and P~. If O1 = O~ then cosfl ffi cosy, and 
fl ffi y. Conversely, if fl = y, then tanO1 = 
tanO2, and O1 ffi 02; hence b). 

A.6 Conditions That Determine an Oblique 
Projection 

As discussed in Section 3, an oblique pro- 
jection is determined by the orientation of 
the projection plane, the angle between the 
projectors and the projection plane, and the 
orientation of the projectors with respect to 
the projection plane normal. The direction 
of~the projectors can be specified in several 
ways. This section identifies four sets of 
parameters that  determine the direction of 
the projectors, and shows their relation- 
ships. The parameters are most conven- 
iently specified relative to a coordinate sys- 
tem with two axes in the projection plane 
and a third along the projection plane nor- 
mal. 

The four sets of parameters are (see Fig- 
ure A-4): 

a) (a,fl), where a is the angle of intersec- 
tion of the projector with the projec- 
tion plane (the xy-plane in Figure 
A-4); fl is the angle of rotation of the 
projector about the normal relative to 
one coordinate axis (the x-axis). 

b) (l,y), where 1 is the length {fore- 
shortening ratio) of the projected unit 
normal of the projection plane; y is 
the angle at which this projected nor- 
mal intersects one of the coordinate 
axes in the projection plane. 

c) (a,b), where a and b are the coordi- 
nates in the projection plane of the 
projected unit normal with respect 
to the chosen coordinate system. 
Oblique projection can be thought of 
as a shear along the projection plane 
followed by an orthographic projec- 
tion. In this shear, a and b are the 
shearing parameters. 

d) (x,y,z), where x, y, and z are the Carte- 
sian coordinates for a vector. In the 
Core Graphics System the projectors 
are specified in this manner. 

Equations which relate these pairs of pa- 
rameters are: 

a) and b): fl = y, 1 ffi cota 
a) a n d  c): a ffi I cosfl, b ffi 1 sinfl 
a) and d): (a,fl) determine the projec- 
tor (x,y,z) relative to a point in the pro- 
jection plane, since (90°+a,fl) can be re- 
garded as spherical coordinates for 
(x,y,z). Hence, x = cosflcosa, y ffi 
sinflcosa, z ffi -sina.  
b) and d): x ffi I cosT, y = 1 sinT, z = 
-1.  (This vector has the same direction 
as (x,y,z) in the previous paragraph, but 
different length.) 

A.7 Conditions That Classify Perspective 
Projections 

As discussed in Section 3, perspective pro- 
jections can be classified by: 

1) the number of the principal coordi- 
nate axes that  intersect (but do not lie 
within) the projection plane, or 

2) the number of finite principal vanish- 
ing points. 

This section shows that  these two condi- 
tions are equivalent. 

A vanishing point for a line L is finite if 
a line through the center of projection, par- 
allel to L, pierces the projection plane. 
Hence, the vanishing point for a coordinate 
axis is finite if a line through the center of 
projection parallel to the coordinate axis 
intersects the projection plane. Clearly this 
is the case if and only if the coordinate axis 
intersects the plane; hence i) and 2) are 
equivalent. 

A.8 Projection Matrices 

The projections discussed in this paper can 
be expressed in a single 4 x 4 matrix. This 
section describes a simple, straightforward 
way of deriving this matrix. 

The projections have so far been dis- 
cussed in terms of choosing projection 
planes as opposed to rotations of the object. 
As mentioned in the Introduction, this 
choice was made for consistency with the 
synthetic camera approach of the Core 
Graphics System. However, in order to de- 
rive a two-dimensional representation of an 
object, it is simpler to consider an arbitrary 
projection of an object as a translation and 
a rotation of this object, followed by a pro- 
jection onto one of the principal planes. For 
the discussion below, this principal plane 
will be the xy-plane. 
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A projection of an object can be imple- 
mented as a three-step process: 1) a trans- 
lation, 2) a rotation, and 3) a projection 
onto a principal plane. Each step can be 
expressed as a homogenous matrix trans- 
formation. Let the translation matrix be T, 
the rotation matrix be R, and the projection 
matrix be P. Then, given a point x on the 
object, the projected point x~ is given by x~ 
= x T . R . P .  

The translation moves the projection 
plane along its normal so that it intersects 
the origin. The translation matrix is 

[ 001 0 i] 
T =  0 1 

d.nl  d.n2 d.n3 

where d is the shortest distance from the 
plane to the origin and (nl, n2, m) is the 
projection plane unit normal. Note that d 
is a signed distance: 

d > 0 if the normal is directed 
towards the origin, 

d <_ 0 otherwise. 

The rotation is a transformation that turns 
the translated projection plane into the 
xy-plane (see Figure A-2). 

Assume that (x, y, z) is the (translated) 
projection plane normal. Then a rotation of 
- O  about the z-axis followed by a rotation 
of - 9  about the yoaxis will accomplish this 
rotation ~5. The composite rotation matrix 
is: 

[coso sn° ° il 
R = sinO cosO 0 

0 0 1 
0 0 0 

[cos0o ° sin° i l 1  o 
-sinO 0 eosO 

0 0 0 

I cosOcosO -s inO cosOsinO 
= sinOcosO cosO sinOsin8 

-sinO 0 cosO 
0 0 0 i] 

~ It  is common practice to draw one of the principal 
axes as a vertical line. In order to accomplish this, a 
third rotation about the z-axis mus t  generally be em- 
ployed. 
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The projection matrices differ for ortho- 
graphic, oblique, and perspective projec- 
tions. These matrices are described below. 

An orthographic projection of a point 
onto the xy-plane is accomplished by the 
homogeneous matrix 

[ 001 0 
P I =  0 0 

0 0 

For orthographic projection, P - -  P~. 
An oblique projection of an object onto 

the xy-plane c~in be thought of as a shear of 
the object along the xy-plane, followed by 
an orthographic projection onto this plane. 
The shearing operation can be expressed in 
matrix form: 

S = E 1 °°i] 0 1 0 
a b l 
0 0 0  

where a, b are the shearing components 
discussed in Section A.6. Hence the projec- 
tion matrix for an oblique projection is P 
= S.P1. 

A perspective projection of a n  object 
onto the xy-plane can be thought of as a 
perspective transformation followed by an 
orthographic projection onto this plane. 
The matrix of this perspective transforma- 
tion is: 

lie 0 0 C =  0 1 
- d  0 

where (c, d, -1 / r )  is the center of projection 
in the translated and rotated coordinate 
system. (The translation by - c  and - d  
positions the center of projection on the z- 
axis.) The perspective projection matrix is 
P = C.P~. The resulting vector (x, y, 0, w) 
is finally divided by w to map the result 
from its 4D representation to 3D. 

A.9 Viewing Specification in the Core 
Graphics System 

This section briefly describes the viewing 
functions in the Core Graphics System and 
gives a few examples of how to use these 
functions. For additional explanations and 



(I .0, - I  .0, 1.0) 

FIGURE A-5a. Construction of an isometric projection. 

FIGURE A-6a. Construction of an oblique projection. 

FIGURE A-5b. Isometric projection resulting from 
the construction in Figure A-5a. (xp, yp and Zp are 
the projected coordinate axes.) 

programming examples, the reader is re- 
ferred to BERG78 in this issue. 

All the viewing parameters in the Core 
System that  define a projection are speci- 
fied relative to the view reference point. 
The view plane normal, (the projection 
plane normal), is specified as a vector. The 
view plane is perpendicular to this vector, 
either through the view reference point or 
at a distance from it, specified by the view 
plane distance. The view up vector defines 
the direction that  is "up" in the projection 
plane and that  is to be vertical in the re- 
suiting projection. 

A parallel projection is specified by a 
vector that  indicates the direction of its 
projectors. A perspective projection is spec- 
ified by its center of projection, which is 
defined relative to the view reference point. 

Example 1: 

The following code will generate an isomet- 
ric view of a cube. The cube, along with the 

FIGURE A-6b. Oblique projection resulting from the 
construction in Figure A-6a. (xp, yp and Zp are the 
projected coordinate axes.) 

view plane, the view plane normal, the pro- 
jectors, and the resulting projected cube is 
illustrated in Figure A-5. 

(* The viewing parameters will be specified 
relative to the origin. *) 
VIEW__REFERENCE__POINT(0.0, 
0.0, 0.0); 

(* An isometric view is obtained if the absolute 
values of the components of the view plane 
normal are all equal. *) 
VIEW__PLANE__NORMAL(1.0, -1.0, 1.0); 

(* Although the distance of the view plane to 
the object does not affect the resulting projec- 
tion, the view plane is positioned at a distance 

Computing Surveys, Vol. 10, No. 4, December 1978 



from the origin to correspond to Figure 
A-5a. *) 
VIEW__PLANE_DISTANCE(-2 .5 ) ;  

(* The y-axis should be vertical in the resulting 
projection. *) 
VIEW__UP__~(0.0, 1.0, 0.0); 

(* The projectors are parallel to the view plane 
normal. *) 
PARALLEL(1.0, -1.0, 1.0); 

(* The routine CUBE generates the cube *) 
CUBE; 

center of 
projection 

(o.L o.5, ,4.o) 

FIGURE A-7a. Construction of a one-point perspec- 
tive projection. 

Yp 

xp 

FIGURE A-7b. One-point perspective projection re- 
sulting from the construction in Figure A-7a. (xp, yp 
and Zp are the projected coordinate axes.) 
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(* The side of the cube parallel to the xy-plane 
is projected to true size. *) 
VIEW__PLANE_NORMAL(0.0 ,  0.0, 1.0); 

(* Although the distance of the view plane to 
the object does not affect the resulting projec- 
tion, the view plane is positioned at a distance 
from the origin to correspond to Figure 
A-6a. *) 
VIEW_PLANE__DISTANCE(-2 .0 ) ;  

(* The y-axis should be vertical in the resulting 
projection. *) 
VIEW__UP_3(0.0,  1.0, 0.0); 

(* The foreshortening ratio of the receding axis 
is % and the axis is projected at a 30 ° angle 
with the projected x-axis. *) 
DELT_X:=COS(30.0)*2.0/3.0; 
D E L T _ Y : = S I N  (30.0)* 2.0/3.0; 
D E L T _ Z : = - I . 0 ;  
PARALLEL(DELT_..X, D E L T _ ¥ ,  
D E L T _ Z ) ;  
CUBE; 

Example 3: 

T h e  following code  will genera te  a one- 
po in t  perspec t ive  v iew of  a cube.  T h e  cube,  
a long wi th  the  view plane,  the  v iew plane  
normal ,  t he  p ro jec to r s ,  a nd  the  resul t ing 
p ro jec ted  cube  is i l lus t ra ted in Figure  A-7. 

VIEW__REFERENCE_POINT(0 .0 ,  0.0, 
o.0); 

(* The view plane is parallel to the xy- 
plane. *) 
VIEW__PLANE__NORMAL(0.0, 0.0, 1.0); 
VIEW__PLANE DISTANCE(-2.0); 

(* The y-axis should be vertical in the resulting 
projection. *) 
VIEW__UP__3(0.0, 1.0, 0.0); 

(* The center of projection is displaced slightly 
horizontally with respect to the center of the 
cube. *) 
PERSPECTIVE(0.7, 0.5, -4.0); 
CUBE; 

ANTH22 

BERG78 

Example 2: 

The following code will generate an oblique CHIN75 
view of a cube. The cube, along with the 
view plane, the view plane normal, the pro- CHUR64 
jectors, and the resulting projected cube is 
illustrated in Figure A-6. CHURIi 

VIEW__REFERENCE__POINT(0.0, 
0.0, 0.0); COOL40 
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