
Computational Models for Argumentation in Multiagent Systems � EASSS 2005

1

Computational Models for
Argumentation in MAS

Carlos Iván Chesñevar
Dept. of Computer Science

UNIVERSITAT DE LLEIDA
SPAIN

Guillermo R. Simari
Dept. of Computer Science and Engineering

UNIVERSIDAD NACIONAL DEL SUR
ARGENTINA

Where are we from…

Univ. Nacional del Sur
(Bahía Blanca, Argentina)

University of Lleida
(Lleida, Catalonia, Spain)

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

2

3Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Main references

• H. Prakken, G. Vreeswijk. Logical Systems for
Defeasible Argumentation, in D. Gabbay (Ed.),
Handbook of Philosophical Logic, 2nd Edition, 2002.

• C.Chesñevar, A.Maguitman, R.Loui. Logical Models of
Argument. In ACM Computing Surveys, Dec. 2000.

• I. Rahwan, S. D. Ramchurn, N. R. Jennings, P.
McBurney, S. Parsons, and L. Sonenberg (2003b)
“Argumentation-based negotiation”. The Knowledge
Engineering Review 18 (4) 343-375.

4Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Outline

• (Very brief) Introduction to Multiagent Systems

• What is argumentation? Fundamentals

• A Case Study: DeLP and its extensions as an
argument-based approach to logic programming.

• Argumentation meets agents: argument-based
negotiation

• Conclusions

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

3

5

Overview

Æ Five ongoing trends have marked the history of
computing:

• ubiquity;

• interconnection;

• intelligence;

• delegation; and

• human-orientation

Credits: some of these slides are based on Michael Wooldridge’s lecture notes for his book “An
Introduction to MAS” (Wiley & Sons, 2002)

6Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Ubiquity, Interconnection, Intelligence

Æ As processing capability spreads,
sophistication (and intelligence of a sort)
becomes ubiquitous.

Æ What could benefit from having a processor
embedded in it…?

Æ Internet is powerful…Some researchers are
putting forward theoretical models that portray
computing as primarily a process of interaction.

Æ The complexity of tasks that we are capable of
automating and delegating to computers has
grown steadily.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

4

7Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Delegation, Human-Orientation

Æ Computers are doing more for us – without our
intervention. Next on the agenda: fly-by-wire
cars, intelligent braking systems…

Æ Programmers conceptualize and implement
software in terms of higher-level – more human-
oriented – abstractions.

Æ The movement away from machine-oriented
views of programming toward concepts and
metaphors that more closely reflect the way we
ourselves understand the world.

8Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Programming progression…

ÆProgramming has progressed through:
• machine code;

• assembly language;

• machine-independent programming languages;

• sub-routines;
• procedures & functions;

• abstract data types;

• objects;

to agents.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

5

9Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Where does it bring us?

Æ Delegation and Intelligence imply the need to
build computer systems that can act effectively
on our behalf.

Æ This implies:

• The ability of computer systems to act
independently.

• The ability of computer systems to act in a way
that represents our best interests while
interacting with other humans or systems.

10Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Interconnection and Distribution

Æ Interconnection and Distribution have become
core motifs in Computer Science.

Æ But Interconnection and Distribution, coupled
with the need for systems to represent our best
interests, implies systems that can cooperate
and reach agreements (or even compete) with
other systems that have different interests
(much as we do with other people).

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

6

11Computational Models for Argumentation in Multiagent Systems – EASSS 2005

So Computer Science expands…
Æ These issues were not studied in Computer

Science until recently.

Æ All of these trends have led to the emergence of a
new field in Computer Science: Multiagent
Systems.

Æ An agent is a computer system that is capable of
independent action on behalf of its user or owner
(figuring out what needs to be done to satisfy
design objectives, rather than constantly being
told).

12Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Multiagent Systems: a Definition

Æ A multiagent system is one that consists of a
number of agents, which interact with one-
another.

Æ In the most general case, agents will be acting
on behalf of users with different goals and
motivations.

Æ To successfully interact, they will require the
ability to cooperate, coordinate, and negotiate
with each other, much as people do.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

7

13Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Multiagent Systems
Æ In Multiagent Systems, we address questions

such as:
• How can cooperation emerge in societies of self-

interested agents?

• What kinds of languages can agents use to
communicate?

• How can self-interested agents recognize
conflict, and how can they (nevertheless) reach
agreement?

• How can autonomous agents coordinate their
activities so as to cooperatively achieve goals?

Module for sensors and control
of effectors

M
od

ul
e

“W
ha

t t
o

do
 n

ex
t?

”

Do-it-yourself agent

Smell
Taste

Sight

Language

Emotions

Thought

Cognitive
Behavior

Memory

Hearing

Muscles

Touch

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

8

Generic Agent

Entvironm
ent

¿What to do?

Effectors

Sensors

Sensors receive
perceptions

Effectors execute those
chosen actions to be
carried out…

Artificial Intelligence: A Modern Approach, 2nd Ed., S.Russell & P.Norvig 2003

ActuatorActuator

Sensors

Desires
Intentions

Beliefs Plans

Argumentation!

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

9

Architecture

Sensors

Beliefs

Desires

Intentions

Plans

Actuator
Actuator

Interpreter

Argumentation-Based
Reasoning Engine!

Agent

Entvironm
entRules

Condition-action What to do?

Effectors

Simple Reactive Agent

Observations
about the world

Sensors

Argumentation-Based
Reasoning Engine!

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

10

Agent

Environm
ent

Rules
Condition-action What to do?

Effectors

Reactive Agent with Inner State

Observations
About the world

State

How the World
Evolves

Consequences of the actions

Sensors

Argumentation-Based
Reasoning Engine!

Effectores

What to do now?

Which are the conseq.
of doing action A

Observations
About the current
State of The world

SensorsAgent

Environm
ent

Goals

Agent with Explicit Goals

State

How
The World

evolves

Consequences from
Actions

Argumentation-Based
Reasoning Engine!

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

11

Effectors

What to do now?

How good is the state
I would achieve?

Which are the
consequences

Of doing action A?

Observations
About the current state

Of The world

SensorsAgent

Environm
ent

Utility-based agent

State

How the World
Evolves

Consequences from
actions

Utility

Argumentation-Based
Reasoning Engine!

22Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Outline

• (Very brief) Introduction to Multiagent Systems

• What is argumentation? Fundamentals

• A Case Study: DeLP and its extensions as an
argument-based approach to logic programming.

• Argumentation meets agents: argument-based
negotiation

• Conclusions

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

12

23Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Systems for defeasible argumentation. Generalities

Typical problems in (non-monotonic) default reasoning:

1) Representation of defaults: e.g. Birds usually fly

2) Inconsistency handling: identify relevant subsets of
consistent information.

3) Identifying preferred models

Many approaches have been developed:

• Default logic (Reiter, 1980)
• Preferred subtheories (Brewka, 1989)

• Circunscription (McCarthy, 1987)

• Others…

24

Systems for defeasible argumentation. Generalities

Argumentation systems (AS) are “yet another way” to formalize
common-sense reasoning. Non-monotonicity arises from the fact that
new premises may give rise to stronger counterarguments, which in
turn will defeat the original argument.

1) Normality condition view: an argument = standard proof
from a set of premises + normality statements.
A counterargument is an attack on such a normality
statement.

2) Inconsistency handling view: an argument = standard
proof from a consistent subset of the premises.
A counterargument is an attack on a premise of an
argument.

3) Semantic view: constructing ‘invalid’ arguments (wrt the
semantics) is allowed in the proof theory.
A counterargument is an attack on the use of an
inference rule which deviates from a preferred model.

Views on
default
reasoning
from an
argumentation
perspective

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

13

25

Systems for Defeasible Argumentation

According to Prakken & Vreeswijk (2002), there are
five common elements to systems for defeasible
argumentation:

Definition of Status of Arguments

Definition of Defeat among Arguments

Definition of Conflict among Arguments

Definition of Argument

Definition of Underlying Logical Language

26Computational Models for Argumentation in Multiagent Systems – EASSS 2005

The underlying logic: Arguments & Logical consequence

Æ Argumentation Systems are constructed starting
from a logical language and an associated notion of
logical consequence for that language.

Æ The logical consequence relation helps to define
what will be considered an argument.

Æ This consequence relation is monotonic, i.e., new
information cannot invalidate arguments as such,
but rather give rise to counterarguments.

Æ Arguments are seen as proofs in the chosen logic.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

14

27Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Argument as a ‘proof’

Arguments are presented under different forms:

Æ An inference tree grounded in premises.

Æ A deduction sequence.

Æ A pair (Premises, Conclusion), leaving unspecified
the particular proof, in the underlying logic, that
leads from the Premises to the Conclusion.

Æ A completely unspecified structure, such as in
Dung’s abstract framework for argumentation
(1995).

28Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Conflict, Attack, Counterargument
The notion of conflict (Counterargument or

Attack) between arguments is typically
discussed discriminating three cases:

Æ Rebutting attacks: arguments with
contradictory conclusions.

Æ Assumption attack: attacking non-provability
assumptions.

Æ Undercutting attacks: an argument that
undermines some intermediate step (inference
rule) of another argument.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

15

29

Rebutting and assumption attacks
Rebutting is symmetric, e.g.:
�Tweety flies because it is a bird�

versus
Tweety doesn�t fly because it is a

penguin’.

tweety flies ¬tweety flies penguin tweety

Assumption attack:
Tweety flies because it is a bird

and it is not provable that
Tweety is a penguin� versus

Tweety is a penguin’

not(penguin tweety)

tweety flies

30

Undercutting attack
Æ An argument challenges the connection

between the premises and the conclusion.

h ¬é p,q,r / h ù

p q r

Tweety flies because all the birds
I�ve seen fly

I�ve seen Opus; it is a bird and
it doesn�t fly

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

16

31Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Direct vs. Indirect Attack

These types of attack could be direct
and indirect.

¬p p

Direct attack
¬p s

p

Indirect attack

32Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Defeat: Comparing Arguments

Æ The notion of conflict does not embody any form of
comparison; this is another element of AS.

Æ Defeat has the form of a binary relation between
arguments, standing for

• ‘attacking and not weaker’ (defeat)

• ‘attacking and stronger’ (strict defeat)

Æ Terminology varies: ‘defeat’ (Simari, 1989; Prakken &
Sartor, 1997), ‘attack’ (Dung, 1995; Bondarenko et. al
1997) and ‘interference’ (Loui, 1998).

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

17

33

Defeat: Comparing Arguments

Æ Argumentation systems vary in their grounds for
evaluation of arguments. One common criterion is the
specificity principle, which prefers arguments based
on the most specific defaults.

bird(opus)

flies(opus)

á A, flies(opus) ñ

bird(opus), broken_wing(opus)

Øflies(opus)

á B, Øflies(opus) ñ

£
defeats

34Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Defeat: Comparing Arguments

Æ However, it has been argued that specificity is not a
general principle of commonsense reasoning, but
rather a standard that might (or might not) be used.

Æ Some researchers even claim that general, domain-
independent principles of defeat do not exist, or are
very weak.

Æ Some even argue that the evaluation criteria are part
of the domain theory, and should also be debatable.

What do you think?

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

18

35Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Defeat: comparing arguments

Æ In Simari&Loui’s framework, specificity is used as
a default, but it is ‘modular’: any other preference
relation defined among arguments could be used.

Æ In Dung’s, defeat is an abstract notion, left
undefined.

Æ In Bondarenko’s framework, defeat is limited to
attack between arguments (there is no preference
at all!)

Æ Other comparison criteria are possible…

36

Defeat: comparing arguments

Æ Defeat is basically a binary relation on a set of args.

Æ But ... it just tells us something about two arguments,
not about a dispute (that may involve many args.)

Æ A common situation is reinstatement as in the example
below (where an argument C reinstates an argument A
by defeating argument B)

A B C�

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

19

37Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Status of Arguments

Æ The last element in our ontology comes into play...
the definition of Status of Arguments.

Æ This notion is the actual output of most Arg.Sys and
arguments are divided into (at least) two classes:

• Arguments with which a dispute can be ‘won’

• Arguments with which a dispute can be ‘lost’

• Arguments that leave the dispute ‘undecided’

Æ Usual terminology: ‘justified’ or ‘warranted’ vs.
‘defeated’ or ‘overruled’ vs. ‘defensible’, etc.

38Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Status of arguments

Æ Status of arguments can be computed either in
‘declarative’ or ‘procedural’ form.

Æ In the declarative form usually requires fixed-point
definitions, and establishes certain sets of
arguments as acceptable (in the context of a set of
premises and a evaluation criteria) but without
defining a procedure for testing whether a given
argument is a member of this set.

Æ ‘Procedural form’ amounts to defining such a
procedure for acceptability.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

20

39

Status of arguments

Declarative form
of argumentation

Argumentation-
theoretic

semantics

Procedural form of
argumentation

Proof Theory

40Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Model-theoretic Semantics

Æ Default logic was initially criticized by the lack of a
model-theoretic semantics...

Æ Several researchers argued that NMR needs a
different kind of semantics than model theory
suggesting an argumentation-theoretic semantics.

Æ Model theory provides meaning to logical
languages by defining how the world would be if
an expression with these symbols would be true.

Æ Should this be the case for argumentative
systems ...?

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

21

41Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Model-theoretic Semantics

Æ Some researchers (e.g. Pollock, Vreeswijk, Loui)
argue that the meaning of defaults should not be
found in a correspondence with reality, but in
their role in dialectical inquiry.

Æ This approach goes as follows: since the central
notions of defeasible reasoning are not
propositional, then the semantics should also be
different, i.e., an argumentation-theoretic
semantics should be defined.

42Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Argumentation-theoretic Semantics

Æ Defeasible rules �premises Þ conclusion�
induce a burden of proof, rather than a
correspondence between a proposition and
the world.

Æ Argumentation-theoretic semantics tries to
capture sets of arguments that are as large as
possible, and defend themselves against
attacks on their members.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

22

43

Argument-based Semantics

Æ Which conditions on sets of arguments should
be satisfied?

Æ We will assume as background
• A set Args of arguments
• A binary relation of �defeat� defined over it.

Def. 1: Arguments are either justified or not justified

1. An argument is justified if all arguments defeating it
(if any) are not justified.

2. An argument is not justified if it is defeated by an
argument that is justified.

44Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Argument-based Semantics

Example: Consider three arguments A, B and C

A B C

�

Argument A and C are justified; argument B is not.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

23

45

Example: Even cycle

A B

A =�Nixon was a pacifist
because he was a quaker�

B =�Nixon wasn�t a pacifist
because he was a republican�

There are two status
assignment that satisfy Def 1

Def. 1: Arguments are either justified or not justified

1. An argument is justified if all arguments defeating
it (if any) are not justified.

2. An argument is not justified if it is defeated by an
argument that is justified.

46Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Argument-based Semantics

In the literature, two approaches to the solution of this
problem can be found.

Æ First approach: changing Def. 1 in such a way that
there is always precisely one possible way to assign
a status to arguments. Undecided conflicts get the
status ‘not justified’.

Allowing unique-status assignment (u.s.a).

Æ Second approach: allowing multiple assignments,
defining an argument as ‘genuinely’ justified iff it is
justified in all possible assignments.

Allowing multiple-status assignment (m.s.a).

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

24

47Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Self-defeating Argument

Another problem with Definition 1

•The role of self-defeating arguments.

A

Self-defeating arguments
are inconsistent with
Definition 1

They can be considered
as plausible constructions.

but...

48Computational Models for Argumentation in Multiagent Systems – EASSS 2005

The Unique-Status-Assignment Approach

This idea could be presented in two
different ways:

Æ Using a fixed-point operator

Æ Given a recursive definition of
justified argument

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

25

49Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Fixed-point Definitions

This approach has been used in several frameworks, e.g.,
Pollock (1987,1992), Simari & Loui (1992) and Prakken &
Sartor (1997). It is based on the notion of reinstatement,
captured by Dung’s definition of acceptability:

Def. 2: (Acceptability)
An argument A is acceptable wrt
a set S of arguments iff each
argument defeating A is defeated
by an argument in S. S

B A

C

A

B

C

50Computational Models for Argumentation in Multiagent Systems – EASSS 2005

A Fixed-point Operator

However, this notion seems to be not sufficient...

A

S

A

B

If S={A}, A is
acceptable wrt S

Def. 3: (Dung’s Grounded Semantics) Let Args be a set of
arguments ordered by a binary relation of defeat, and let
S Í Args. Then the operator F is defined as follows.
F(S) = { A Î Args | A is acceptable wrt S }

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

26

51Computational Models for Argumentation in Multiagent Systems – EASSS 2005

A Fixed-point Operator

Dung proves that the operator F has a least fixed point

Def. 4: (Justified Argument) An arg. is justified
iff it is a member of the least fixed point of F.

Def. 5: (Least fixed point of F)

� F0 = Æ

� Fi+1 = { AÎArgs | A is acceptable wrt Fi }

52

Propositions

1. All arguments in Èi=0..¥ (Fi) are justified.
2. If each argument is defeated by at most a

finite number of arguments, then an
argument is justified iff it is in Èi=0..¥ (Fi).

Consider the previous example :
F1 = F(Æ) = {C }
F2 = F(F(Æ)) = {A, C }
F3 = F(F2(Æ)) = F2 S

B A

C

A

B

C

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

27

53Computational Models for Argumentation in Multiagent Systems – EASSS 2005

G operator. Levels in Justification

Def. 6: (G operator) Let Args be a set of arguments
ordered by a binary relation of defeat. Then

G(S)={AÎArgs | A is not defeated by any arg. in S}

Def. 7: (Levels in justification)
– All arguments are in level 0
– An argument is in at level (n+1) iff it is not

defeated by any argument at level n
– An argument is justified iff there is an m such that

for every n ³ m, the argument is in at level n.

54Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Examples

A B
A, B4

3
A, B2

1
A, B0
INLevel

A B C
�4

A, C3

A, C2

C1

A, B, C0
INLevel

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

28

55Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Infinite defeat chain

Consider an infinite chain of args A1, ..., An such
that A1 is defeated by A2, A2 is defeated by A3,
and so on.

A1 A2 A3 ...

The least fixed point of this chain is empty, since no
argument is undefeated. Consequently, F(Æ) = Æ

This example has two other fixed points:
F1 = {A1, A3, A5, A7, ... }
F2 = {A2, A4, A6, A8, ...}

56

Defensible and Overruled Arguments

Consider the following situation:

A B C

B is not defeated by a
justified argument!

“B” is called “zombie argument” (Makinson & Schlechta,1991),
or “defensible arguments” (Prakken & Sartor).

Def 8: (Overruled and defensible arguments)
� A is overruled iff A is not justified, and A is defeated by a

justified argument
� A is defensible iff A is not justified and A is not overruled.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

29

57Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Defensible and Overruled Arguments

Argument

Justified

Not Justified

Properly “Not Justified”
= Overruled

Defensible

In summary:

58Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Self-defeating arguments

A B

Intuitively, B should be justified ...

But F(Æ) = Æ, so neither of them is!

Def. 9: (Levels in justification / modified)
– An argument is in at level 0 iff it is not self-defeating.
– An argument is in at level (n+1) iff it is is in at level 0 and it

is not defeated by any arg. at level n
– An argument is justified iff there is an m such that for every

n ³ m, the argument is in at level n.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

30

59Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Self-defeating Arguments

Appart from Pollock’s refined version of “level-n
arguments”, there are other possible solutions
to self-defeating arguments:

Æ Distinguishing a special empty argument which
defeats any self-defeating argument (Prakken
& Sartor, Vreeswijk).

Æ Demanding that by construction arguments
must be non self-defeating, (Simari & Loui).

60

Problems with Unique-Status Assignment

There are some problems when evaluating unique-
status assignment.

Example: Floating Arguments / Floating Conclusions

A B

C

D

A B
A- B-

p The unique-status
approach is
inherently unable to
capture floating
arguments and
conclusions.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

31

61

Using Multiple-Status Assignment

Æ A second way to deal with competing arguments of equal
strenght is to let them induce two alternative status
assignments.

Æ Evaluating outcomes from alternative status assignments
let us determine when an argument is justified.

Def. : (Status assignment) Given a set S of args ordered by
a binary defeat relation, an status assignment sa(S) is a
function which maps every argument in S into {in,out},
such that:

i. A is in iff all args defeating it (if any) are out.

ii. A is out if it is defeated by an arg that is in.

62Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Example

A B A B

Def. : (Justification) Given a set S of arguments
ordered by a binary defeat relation, an
argument is justified iff it is in in all possible
status assignments to S.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

32

63Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Classifying Arguments

Def. : Given a set S of arguments ordered by a
binary defeat relation, an argument A is

– justified iff it is ‘in’ in all sa(S).

– overruled iff it is ‘out’ in all sa(S)

– defensible iff it is ‘out’ in some sa(S), ‘in’ in
others.

Æ Are the two approaches are equivalent?

Æ The answer is no.

64Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Equivalent?

The unique-status
approach says ‘all
arguments are defensible’

The multiple-status
approach says ‘C is
overruled’, and ‘D is
justified’

A B

D

C

A B

D

C

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

33

65Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Status of Conclusions

Def.: (Status of Conclusions)
• j is a justified conclusion iff every status assignment

assigns ‘in’ to an arg. with conclusion j.
• j is a defensible conclusion iff j is not justified, and a

conclusion of a defensible argument.
• j is an overruled conclusion iff j is not justified or

defensible, and a conclusion of an overruled argument.

Æ Changing the first clause into ‘j is a justified
conclusion iff j is the conclusion of a justified
argument’ would make a stronger notion ...

66Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Problems with Multiple-Status Assignment

A

Æ What are the status assignments?

Æ There are no status assignments!

C

A B

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

34

67Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Comparing the two approaches

Æ Some researchers say that the difference
between the two approaches can be compared
with the ‘skeptical’ vs. ‘credulous’ attitude
towards drawing defeasible conclusions ...

Æ m.s.a is more convenient for identifying sets of
arguments that are compatible with each other.

Æ u.s.a considers arguments on an individual
basis.

68Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Example

Æ This example has 2 status assignments:
{A, C } and {B, D }

Note that A and D are somehow incompatible;
in the unique-assignment approach this
notion is (or seems) harder to capture.

CA B D

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

35

69Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Outline

• (Very brief) Introduction to Multiagent Systems

• What is argumentation? Fundamentals

• A Case Study: DeLP and its extensions as an
argument-based approach to logic programming.

• Argument-based negotiation

• Conclusions

70Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Deafeasible Logic Programming: DeLP

A Defeasible Logic Program (dlp) is a set of facts, strict and
defeasible rules denoted P = (P, D)

bird(X) ¬ chicken(X) chicken(tina)
bird (X) ¬ penguin(X) penguin(opus)
Øflies(X) ¬ penguin(X) scared(tina)

flies(X) % bird(X)
Øflies(X) % chicken(X)
flies(X) % chicken (X), scared(X)

Strict
Rules Facts

Defeasible
Rules

P

D

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

36

71Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Defeasible Argumentation

Def: Let L be a literal and P = (P, D) be a program.
áA, Lñ is an argument, for L, if A is a set of rules in
D such that:

1) There exists a defeasible derivation of L
from P È A;

2) The set P È A is non contradictory; and

3) There is no proper subset A¢ of A such that A¢

satisfies 1) and 2).

Øbuy_shares(acme)

good_price(acme) risky(acme)

good_price(acme) in_fusion(acme, enron)

in_fusion(acme, enron)

buy_shares(X) % good_price(X)
Øbuy_shares (X) % good_price(X), risky(X)
risky(X) % in_fusion(X, Y)
risky(X) % in_debt(X)
Ørisky(X) % in_fusion(X, Y), strong(Y)
good_price(acme)
in_fusion(acme, estron)
strong(estron)

á{Øbuy_shares(acme) % good_price(acme), risky(acme).,
risky(acme) % in_fusion(acme, enron).}, Øbuy_shares(acme)ñ

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

37

áS, Qñ is a subargument of áA, Lñ if S is an argument for Q and S Í A

Øbuy_shares(acme)

good_price(acme) risky(acme)

good_price(acme) in_fusion(acme, enron)

in_fusion(acme, enron)

A = {Øbuy_shares(acme) % good_price(acme), risky(acme).,

risky(acme) % in_fusion(acme, enron). }

S = { risky(acme) % in_fusion(acme, enron). }

Ørisky(acme)

in_fusion(acme,estron) strong(estron)

in_fusion(acme,estron) strong(estron)

Øbuy_shares(acme)

good_price(acme) risky(acme)

good_price(acme) in_fusion(acme,estron)

in_fusion(acme,estron)

P È { risky(acme), Ørisky(acme) }
is a contradictory set

Counter-argument

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

38

75

Argument Comparison: Generalized Specificity

Def: Let P = (P, D) be a program, let PG be the set of strict
rules in P and let F be the set of all literals that can be
defeasibly derived from P. Let áA1, L1ñ and áA2, L2ñ be
two arguments built from P, where L1, L2 Î F.
Then áA1, L1ñ is strictly more specific than áA2, L2ñ if:

1. For all H Í F, if there exists a defeasible derivation
PG È H È A1'L1 while PG È H � L1 then
PG È H È A1'L2, and

2. There exists H¢ Í F such that there exists a defeasible
derivation PG È H¢ È A2 'L2 and PG È H¢ � L2

but PG È H¢ È A1 (L1

(Poole, David L. (1985). On the Comparison of Theories: Preferring the Most Specific Explanation.
pages 144�147 Proceedings of 9th IJCAI.)

76Computational Models for Argumentation in Multiagent Systems – EASSS 2005

An argument áB, Pñ is a defeater for áA, Lñ if áB, Pñ is a
counter-argument áA, Lñ that atacks a subargument áS, Qñ
de áA, Lñ and one of the following conditions holds:

(a) áB, Pñ is better than áS, Qñ (proper defeater), or

(b) áB, Pñ is not comparable to áS, Qñ (blocking defeater)

A

L

B

P

Q

S

Defeaters

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

39

77

Given P = (P, D), and áA0, L0ñ an argument obtained from P. An
argumentation line for áA0, L0ñ is a sequence of arguments obtained
from P, denoted L = [áA0, L0ñ, áA1, L1ñ, �] where each element in
the sequence áAi, hiñ, i > 0 is a defeater for áAi-1, hi-1ñ.

A0

L0

A1

L1

Argumentation Line

A2

L2

A3

L3

A4

L4

78

Given an argumentation line L = [áA0, L0ñ, áA1, L1ñ, �], the
subsequence LS = [áA0, L0ñ, áA2, L2ñ, �] contains supporting
arguments and LI = [áA1, L1ñ, áA3, L3ñ, �] are interfering
arguments.

Argumentation Line

A0

L0

A1

L1

A2

L2

A3

L3

A4

L4

LS

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

40

79

Argumentation Line

A0

L0

A1

L1

A2

L2

A3

L3

A4

L4

LI

Given an argumentation line L = [áA0, L0ñ, áA1, L1ñ, �], the
subsequence LS = [áA0, L0ñ, áA2, L2ñ, �] contains supporting
arguments and LI = [áA1, L1ñ, áA3, L3ñ, �] are interfering
arguments.

80Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Acceptable Argumentation Line

Given a program P = (P, D), an argumentation line
L = [áA0, L0ñ, áA1, L1ñ, �] will be acceptable if:

1. L is a finite sequence.

2. The sets LS of supporting arguments is concordant, and
the set LI of interfering arguments is concordant.

3. There is no argument áAk, Lkñ in L that is a
subargument of a preceeding argument áAi, Liñ, i < k.

4. For all i, such that áAi, Liñ is a blocking defeater for
áAi-1, Li-1ñ, if there exists áAi+1, Li+1ñ then áAi+1, Li+1ñ is
a proper defeater for áA, Liñ (i.e., áA, Liñ could not be
blocked).

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

41

A0

A1

B2

B3 L2

A2

A3

A4 L1

C3

C4

C5 L3

D1

D2 L4

Dialectical Tree
Given a program P = (P, D),
a literal L will be warranted if
there is an argument áA, Lñ
built from P, and that
argument has a dialectical
tree whose root node is
marked U.

That is, argument áA, Lñ is
an argument for which all the
possible defeaters have been
defeated.

We will say that A is a
warrant for L.

T áA, Lñ

T *áA, Lñ

Marking of a
Dialectical Tree

A U

U

D U

U U

U

U

D

D D

D

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

42

83Computational Models for Argumentation in Multiagent Systems – EASSS 2005

Answers in DeLP

Given a program P = (P, D), and a query for L the
posible answers are:

• YES, if L is warranted.

• NO, if ØL is warranted.

• UNDECIDED, if neither L nor ØL are warranted.

• UNKNOWN, if L is not in the language of the
program.

84Computational Models for Argumentation in Multiagent Systems – EASSS 2005

DeLP : extensions

Æ Recently extensions of DeLP have been
developed:

• P-DeLP (Chesñevar et. al, 2004): aims at
modelling reasoning under uncertainty (e.g.
possibilistic reasoning).

• O-DeLP (Capobianco et. al, 2004): aims at
modelling reasoning for agents in changing
environments.

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

43

Argument-based Recommenders

Text

Web Search
Engine

s1�skDeLP
Program

P

DeLP
Interpreter

Suggestion

User
preferences

Web
Corpus

Compute built-in
usage predicates

Lexical
Database

si ={t1,..., tm}

si*={t1,..., tj* ...,tm}

Parser

Repairer

NL assessment using arguments

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

44

Dialectical
base

ODeLP
inference
engine

Updating
mechanism perce

ptio
ns

queri
es

ans
wers

Observations

Defeasible
rules

ODeLP-based agent architecture

88Computational Models for Argumentation in Multiagent Systems – EASSS 2005

P-DeLP in an agent’s reasoning module

Sample rules:
• When there is pump clog, fuel is not ok:

(Øfuel_ok ¬ pump_clog , 1)

• When there is heat, usually engine is not ok.
(Øengine_ok ¬ heat, 0.95)

sw1 sw2 sw3

Oil
Pump

Fuel
Pump

Speed:03

Motor
Engine has 3 switches on

There is heat

Is the engine ok?

Computational Models for Argumentation in Multiagent Systems � EASSS 2005

45

P-DeLP program

Facts

Rules

Updating
mechanism

P-DeLP
Inference

engine
Dialectical

Base

Sensor input
(perception)

Other Agent
(e.g. supervisor

agent)

queries

answers

Environment
(e.g. engine)

áA1 , engine_ok, 0.3ñ

áA2 , Øfuel_ok, 0.6ñ áA5 , Øengine_ok, 0.95ñ

áA3 , Ølow_speed, 0.6ñ áA4 , Øfuel_ok, 0.6ñ
U U

UD

D Query: engine_ok?
Answer: No (0.3)

Agent Reasoning Module

Second Part

