



























































































































































Acceptable Argumentation Line

Given a program $\mathcal{P} = (\Pi, \Delta)$, an argumentation line $\Lambda = [\langle \mathcal{A}_0, L_0 \rangle, \langle \mathcal{A}_1, L_1 \rangle, \ldots]$ will be *acceptable* if:

1. Λ is a finite sequence.

omputational Models for Argumentation in Multiagent Systems – EASSS 2005

- 2. The sets Λ_s of supporting arguments is concordant, and the set Λ_I of interfering arguments is concordant.
- 3. There is no argument $\langle A_k, L_k \rangle$ in Λ that is a subargument of a preceeding argument $\langle A_i, L_i \rangle$, i < k.
- 4. For all *i*, such that $\langle A_i, L_i \rangle$ is a blocking defeater for $\langle A_{i\cdot 1}, L_{i\cdot 1} \rangle$, if there exists $\langle A_{i+1}, L_{i+1} \rangle$ then $\langle A_{i+1}, L_{i+1} \rangle$ is a proper defeater for $\langle A, L_i \rangle$ (*i.e.*, $\langle A, L_i \rangle$ could not be blocked).

80



















