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The notion of forms as a way of organizing and presenting data has been used since

the beginning of the World Wide Web. Web-based forms have evolved together with the
development of new markup languages, in which it is possible to provide validation scripts

as part of the form code to test whether the intended meaning of the form is correct.

However, for the form designer, part of this intended meaning frequently involves other
features which are not constraints by themselves, but rather attributes emerging from the

form, which provide plausible conclusions in the context of incomplete and potentially

inconsistent information. As the value of such attributes may change in presence of
new knowledge, we call them defeasible attributes. In this paper we propose extending

traditional web-based forms to incorporate defeasible attributes as part of the knowledge

that can be encoded by the form designer. The proposed extension allows the specification
of scripts for reasoning about form fields using a defeasible knowledge base, expressed in

terms of a Defeasible Logic Program.
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1. Introduction

The notion of form as a way of organizing and presenting data is a well-known
structural abstraction for data collection, storage, and information retrieval. Forms
are important means to design and develop user-oriented information systems, and
have long been used since the very beginning of the World Wide Web. Web-based
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forms have evolved together with the introduction of new markup languages (e.g.,
XML), in which it is possible to provide validation scripts as part of the form code
in order to test whether the intensional meaning of the form is correct.16

Fulfilling the goals of the Semantic Web program 17 requires having tools capable
of dealing with the potential inconsistencies and incompleteness of web data sources.
A particularly important application domain is e-commerce technologies, which
typically demand validation of user data (e.g., credit card numbers) against a set of
criteria for determining if a given user is eligible for certain prospective transaction.
Performing validations on field values allows to determine whether the intended
meaning of such fields is coherent according to some criteria established by the
form designer. Such validations usually consist of a number of hard-coded decision
criteria which are specified as a portion of imperative code in a script language.
However, in many cases there are some emerging features which can be inferred as
part of the “intended meaning” of the form without being field values themselves.
Thus, in the case of a bank loan application, the notion of “reliable client” applied to
some particular customer may be inferred as a plausible conclusion from knowing the
annual income and banking records of that customer. Such features (or attributes)
of the form are difficult to model in terms of pieces of imperative code, particularly
in presence of incomplete and potentially contradictory information. The associated
conclusions that could be inferred turn out to be defeasible, as they may change in
the light of new information.

Our proposal is to extend traditional web-based forms to incorporate additional
attributes as part of the declarative knowledge that can be encoded in a form. The
value of such attributes will depend on the global consideration of incomplete or
potentially inconsistent information. As these values may change in presence of new
evidence or information, we call them defeasible attributes.

The proposed extension allows the specification of scripts for handling such de-
feasible attributes on the basis of a defeasible knowledge base associated with the
form, expressed in terms of Defeasible Logic Programming (DeLP),18 a particu-
lar formalization of defeasible argumentation 19 based on logic programming. We
will show how this extension can be easily integrated with existing client-based ap-
proaches for handling forms, such as the use of JavaScript validation codes. The
rest of this paper is structured as follows. In Section 2, we present the fundamentals
of defeasible argumentation with an emphasis on Defeasible Logic Programming
(DeLP), along with a worked example which will be used to illustrate the different
concepts presented in the paper. Section 3 describes generic issues about web-based
forms as well as the importance of introducing defeasible attributes. Section 4 intro-
duces the notion of web-based form with defeasible attributes, or δ-forms. Section 5
presents X-DeLP, a script-like variant of DeLP oriented towards XHTML standards.
We show how to encode δ-forms using X-DeLP, and illustrate how this scripting
language can help to provide a first approach to formalizing argument-based on-
tologies. Section 6 analyzes implementation issues related to X-DeLP. Section 7
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discusses related work and finally Section 8 concludes and outlines some future
research directions.

2. Modeling Argumentation in DeLP

2.1. Argumentation in AI: Background

Artificial Intelligence (AI) is concerned with the challenge of modeling common-
sense reasoning, which almost always occurs in the face of incomplete and poten-
tially inconsistent information.20,21,22 Logical models of common-sense reasoning
demand the formalization of principles and criteria for characterizing valid patterns
of inference. In this respect, classical logic has proven to be inadequate, since it
behaves monotonically and cannot deal with inconsistencies at object level.21

When a rule supporting a conclusion may be defeated by new information, it is
said that such reasoning is defeasible.23,24,25,26,27 When defeasible reasons or rules
are chained to reach a conclusion, we have arguments instead of proofs. Arguments
may compete, rebutting each other, so that a process of argumentation is a natural
result of the search for arguments. Adjudication of competing arguments must be
performed, comparing arguments in order to determine what beliefs are ultimately
accepted as warranted or justified. Preference among conflicting arguments is defined
in terms of a preference criterion which establishes a relation “ � ” among possible
arguments; thus, for two arguments A and B in conflict, it may be the case that A is
strictly preferred over B (A � B), that A and B are equally preferable (A � B and
A � B) or that A and B are not comparable with each other. In the above setting,
since we arrive at conclusions by building defeasible arguments, and since logical
argumentation is usually referred to as argumentation, we sometimes call this kind
of reasoning defeasible argumentation.

Let us consider a well-known problem of nonmonotonic reasoning in AI about
the flying abilities of birds, recast in argumentative terms. Consider the following
sentences:

(1) Birds usually fly.
(2) Penguins usually do not fly.
(3) Penguins are birds.

The first two sentences correspond to defeasible rules (rules which are subject
to possible exceptions). The third sentence is a strict rule, where no exceptions are
possible. Now, given the fact that Tweety is a penguin two different arguments can
be constructed:

(1) Argument A (based on rules 1 & 3): Tweety is a penguin. Penguins are birds.
Birds usually fly. So, Tweety flies.

(2) Argument B (based on rule 2): Tweety is a penguin. Penguins usually do not
fly. So, Tweety does not fly.

In this particular situation, two arguments arise that cannot be accepted simul-
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taneously (as they reach contradictory conclusions). Note that argument B seems
rationally preferable over argument A, as it is based on more specific information.
As a matter of fact, specificity is commonly adopted as a syntax-based preference
criterion among conflicting arguments, favoring those arguments which are more
informed or more direct.28,29 In this particular case, if we adopt specificity as a
preference criterion, argument B is justified, whereas A is not (as it is defeated by
B). The above situation can easily become much more complex, as an argument
may be defeated by a second argument, which in turn can be defeated by a third
argument, reinstating the first one (for instance, we might learn that Tweety is ac-
tually a genetically altered penguin and might know as well that genetically altered
penguins are able to fly).

The growing success of argumentation-based approaches has caused a rich cross-
breeding with other disciplines, providing interesting results in different areas such
as group decision making,30 knowledge engineering,31 legal reasoning,32,33 and mul-
tiagent systems,34,35,36 among others. During the last decade several defeasible ar-
gumentation frameworks have been developed, most of them on the basis of suit-
able extensions to logic programming (see 19,37,38). Defeasible logic programming
(DeLP) 18 is one of such formalisms, combining results from defeasible argumen-
tation theory 27 and logic programming. DeLP is a suitable framework for build-
ing real-world applications which has proven to be particularly attractive in that
context, such as clustering,7 intelligent web search,8,1 knowledge management,4,39

multiagent systems10 and natural language processing,5 among others.

2.2. Defeasible Logic Programming: Fundamentals

2.2.1. Knowledge Representation

Next we will introduce the basic definitions to represent knowledge in Defeasible
Logic Programming (DeLP). For an in-depth treatment, the interested reader is
referred to.18,40 In what follows, we assume that the reader has basic knowledge
concerning fundamentals aspects of logic programming.41,42

Definition 2.1. (DeLP program P) A defeasible logic program (delp) is a
set P = (Π,∆) where Π and ∆ stand for sets of strict and defeasible knowl-
edge, respectively. The set Π of strict knowledge involves strict rules of the form
L ← Q1, . . . , Qk and facts (strict rules with empty body), and it is assumed to be
non-contradictory.a The set ∆ of defeasible knowledge involves defeasible rules of
the form L −≺ Q1, . . . , Qk, which stands for “Q1, . . . , Qk provide tentative reasons
to believe L”. Strict and defeasible rules in DeLP are defined using a finite number
of literals. A literal is an atom (L), the strict negation of an atom (∼L) or the
default negation of an atom (not L).

aContradiction stands for deriving two complementary literals w.r.t. strict negation (L and ∼L)
or default negation (L and not L).
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The underlying logical language in DeLP is that of extended logic
programming,43,42 enriched with a special symbol “ −≺ ” to denote defeasible rules.
Both default and classical negation are allowed (denoted not and ∼ , respec-
tively). Syntactically, the symbol “ −≺ ” is all what distinguishes a defeasible rule
L −≺ Q1, . . . , Qk from a strict (non-defeasible) rule L ← Q1, . . . , Qk. DeLP rules
are thus to be thought of as inference rules rather than implications in the object
language. Analogously as in traditional logic programming, the definition of a pred-
icate P in P, denoted PP , is given by the set of all those (strict and defeasible)
rules with head P and arity n in P. If P is a predicate in P, then name(P ) and
arity(P ) will denote the predicate name and arity, resp. We will write Pred(P) to
denote the set of all predicate names defined in a DeLP program P.

Next we present an example in the banking domain which will help to illustrate
how to encode knowledge corresponding to a real-world problem using DeLP.

Example 2.1. An international bank keeps track of its clients in order to de-
termine which clients are potential candidates for getting loans. For every client
the bank keeps name, country of origin, profession, average income per month, and
family status of the client. The account manager of the bank has a number of crite-
ria for granting loans, which allow to determine whether a person has a reasonable
“profile,” according to his personal records. Such criteria provide a way to arrive to
tentative, defeasible conclusions (as they might be changed in the presence of new
information).

Figure 1 shows a DeLP program Pbank for assessing the status of a loan applica-
tion. Facts (1–3) are defined using a predicate info, and have the form info(Name,
Country, Profession, IncomePerMonth), providing information about different cus-
tomers —fact (1) indicates that John is a PhD student from a country named
Krakosia and has an average income of $400 a month; fact (2) says that Ajax is
also a PhD student but from Greece and has an average income of $350 a month,
and from fact (3) it follows that Danae is from Greece with an income of $10, 000
a month and with no information regarding her profession. Facts (4–6) describe
how much money has been requested by each customer to the bank, whereas facts
(7–9) summarize the family records of the customers. Facts (10–11) establish that
Krakosia and Greece are considered as trustworthy countries by the bank authori-
ties, and finally fact (12) says that Peter is a millionaire.

Defeasible rules specify tentative criteria for granting loans. Thus, defeasible
rules (13–14) express that a person P is typically a candidate for getting a loan
granted if either P has the ‘right profile’ or if the requested loan is reasonable
with respect to the income in the last months and P comes from a trustworthy
country. Rule (15) says that a right profile is defined in terms of monthly income
and country. Rule (16) establishes that usually all countries are trustworthy. Rule
(17) says that a person P has a reasonable income if it is typically $300 a month or
higher. Rule (18) expresses that usually a person P who is not economically solvent
does not have a reasonable income. Rules (19–20) say that usually PhD students



March 1, 2006 18:12 WSPC/ws-ijitdm article

6 S.A. Gómez, C.I. Chesñevar & G.R.Simari

are not solvent people unless they come from rich families. Finally, rule (21) says
that families classified by the bank with a status “rich” are usually those with a
bank record which supports such classification.

Program Pbank includes also a strict rule (22) which indicates that all million-
aires are candidates for loans. Note that in this particular example we have

Pred(Pbank) = {info/4, family record/2, req loan/2,
credible/1, candidate/1, profile ok/1, trustctry/2,
goodincome/1, solvent/1, richfamily/1, millionaire/1 }

Facts (user provided information):
(1) info(john, krakosia, phdstudent, 400).
(2) info(ajax, greece, phdstudent, 350).
(3) info(danae, greece, none, 10000).
(4) req loan(john, 2000).
(5) req loan(ajax, 4500).
(6) req loan(danae, 1000).

Facts (bank provided information):
(7) family record(john, rich).
(8) family record(ajax, unknown).
(9) family record(danae, unknown).
(10) credible(krakosia).
(11) credible(greece).
(12) millionaire(peter).

Defeasible rules:
(13) candidate(P ) −≺ profile ok(P ).
(14) candidate(P ) −≺ info(P, , , Income), req loan(P, Amount),

Amount < Income ∗ 10, trustctry(P, Ctry).
(15) profile ok(P ) −≺ goodincome(P ), trustctry(P, Ctry).
(16) trustctry(P, Ctry) −≺ info(P, Ctry, , ), credible(Ctry).
(17) goodincome(P ) −≺ info(P, , , Income), Income > 300.
(18) ∼goodincome(P ) −≺ ∼solvent(P ).
(19) ∼solvent(P ) −≺ info(P, , phdstudent, ).
(20) solvent(P ) −≺ info( , , phdstudent, ), richfamily(P ).
(21) richfamily(P ) −≺ family record(P, rich).

Strict rules:
(22) candidate(P ) ← millionaire(P ).

Fig. 1. Defeasible logic program Pbank with bank criteria for analyzing a loan application (Exam-
ple 2.1)
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2.2.2. Argument, Counterargument, and Defeat

Given a DeLP program P = (Π,∆), solving queries results in the construction of
arguments. An argument A is a (possibly empty) set of ground defeasible rules that
together with the set Π provides a logical proof for a given literal Q, satisfying the
additional requirements of non-contradiction and minimality. Formally:

Definition 2.2. (Argument) Given a DeLP program P, an argument A for a
query Q, denoted 〈A, Q〉, is a subset of ground instances of defeasible rules in P,
such that:

(1) there exists a defeasible derivation for Q from Π ∪ A;
(2) Π ∪ A is non-contradictory (i.e., Π ∪ A does not entail two complementary

literals L and ∼L (or L and notL)), and,
(3) A is minimal with respect to set inclusion (i.e., there is no A′ ⊂ A such that

there exists a defeasible derivation for Q from Π ∪ A′).

An argument 〈A1, Q1〉 is a sub-argument of another argument 〈A2, Q2〉 if A1 ⊆ A2.
Given a DeLP program P, Args(P) denotes the set of all possible arguments that
can be derived from P.

The notion of defeasible derivation corresponds to the usual query-driven SLD
derivation used in logic programming (see 41 for a textbook presentation), performed
by backward chaining on both strict and defeasible rules; in this context a negated
literal ∼P is treated just as a new predicate name no P . Minimality imposes a kind
of “Occam’s razor principle”27 on argument construction. The non-contradiction
requirement forbids the use of (ground instances of) defeasible rules in an argument
A when Π ∪ A entails two complementary literals. It should be noted that non-
contradiction captures the two usual approaches to negation in logic programming
(viz., default negation and classical negation), both of which are present in DeLP
and related to the notion of counterargument, as shown next.

Definition 2.3. (Counterargument) An argument 〈A1, Q1〉 is a counterargu-
ment for an argument 〈A2, Q2〉 iff

a) (subargument attack) there is a subargument 〈A, Q〉 of 〈A2, Q2〉 (called dis-
agreement subargument) such that the set Π ∪ {Q1, Q} is contradictory, or

b) (default negation attack) a literal notQ1 is present in the body of some rule in
A2.

The former notion of attack is borrowed from Simari-Loui’s framework;27 the
latter one is related to Dung’s argumentative approach to logic programming44 as
well as to other formalizations, such as in Prakken and Sartor’s work45 or Kowa
and Toni’s work.46

As in most argumentation frameworks, we will assume a preference criterion
on conflicting arguments defined as a relation � which is a subset of the cartesian
product Args(P)×Args(P). This leads to the notion of defeat among arguments as
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a refinement of the notion of counterargument.27 In particular, we will distinguish
between two kinds of defeaters, proper and blocking defeaters as follows.

Definition 2.4. (Proper and blocking defeaters) An argument 〈A1, Q1〉 is a
proper defeater for an argument 〈A2, Q2〉 if 〈A1, Q1〉 counterargues 〈A2, Q2〉 with
a disagreement subargument 〈A, Q〉 (subargument attack) and 〈A1, Q1〉 is strictly
preferred over 〈A, Q〉 w.r.t. �.

An argument 〈A1, Q1〉 is a blocking defeater for an argument 〈A2, Q2〉 if 〈A1, Q1〉
counterargues 〈A2, Q2〉 and one of the following situations holds: (a) There is a dis-
agreement subargument 〈A, Q〉 for 〈A2, Q2〉, and 〈A1, Q1〉 and 〈A, Q〉 are unrelated
to each other w.r.t. �; or (b) 〈A1, Q1〉 is a default negation attack on some literal
notQ1 in 〈A2, Q2〉.

The term defeater will be used when referring indistinctly to proper or blocking
defeaters.

Generalized specificity 27 is typically used as a syntax-based preference crite-
rion among conflicting arguments, favoring those arguments which are more in-
formed or more direct.27,47 For the sake of example, let us consider three arguments
〈{a −≺ b, c}, a〉, 〈{∼a −≺ b},∼a〉 and 〈{(a −≺ b); (b −≺ c}), a〉 built on the basis of a
program P=(Π,∆) = ({b, c}, {b −≺ c; a −≺ b; a −≺ b, c;∼a −≺ b}). When using gen-
eralized specificity as the comparison criterion between arguments, the argument
〈{a −≺ b, c}, a〉 would be preferred over the argument 〈{∼a −≺ b},∼a〉 as the former
is considered more informed (i.e., it relies on more premises). However, argument
〈{∼a −≺ b},∼a〉 is preferred over 〈{(a −≺ b); (b −≺ c}), a〉 as the former is regarded
as more direct (i.e., it is obtained from a shorter derivation). However, it must
be remarked that besides specificity other alternative preference criteria could also
be used; e.g., considering numerical values corresponding to necessity measures
attached to argument conclusions 6,3 or defining argument comparison using rule
priorities. This last approach is used in d-Prolog,25 Defeasible Logic,48 extensions
of Defeasible Logic,49,50 and logic programming without negation as failure.51,52

Example 2.2. Consider the DeLP program shown in Example 2.1. There exists
an argument A supporting the defeasible conclusion that John is a candidate for a
loan, i.e., 〈A1, candidate(john)〉, where:b

A1 = {(candidate(john) −≺ profile ok(john));

(profile ok(john) −≺ goodincome(john), trustctry(john, krakosia));

(trustctry(john, krakosia) −≺ info(john, krakosia, , ), credible(krakosia));

(goodincome(john) −≺ info(john, , , 400), 400 > 300)};

bFor the sake of clarity, we use parentheses to enclose defeasible rules in arguments, separated by
semicolons, i.e. A = {(rule1) ; (rule2) ; . . . ; (rulek)}.
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Another argument 〈A2,∼goodincome(john)〉 can be derived from Pbank, sup-
porting the conclusion that John does not have a reasonable income, with:

A2 = {(∼goodincome(john) −≺ ∼solvent(john));

(∼solvent(john) −≺ info(john, , phdstudent, )}.

In this case, using generalized specificity 27 as the preference criterion among con-
flicting arguments, it turns out that the argument 〈A2,∼goodincome(john)〉 is a
blocking defeater for the argument 〈A1, candidate(john)〉.

2.2.3. Computing Warrant through Dialectical Analysis

Given an argument 〈A, Q〉, there may exist different defeaters 〈B1, Q1〉,. . . ,〈Bk, Qk〉,
k ≥ 0 for 〈A, Q〉. Should the argument 〈A, Q〉 be defeated, then it would be no longer
supporting its conclusion Q. However, since defeaters are arguments, they may on
their turn be defeated. That prompts for a complete recursive dialectical analysis
to determine which arguments are ultimately defeated. To characterize this process
we will introduce first some auxiliary notions.

An argumentation line starting in an argument 〈A0, Q0〉 (denoted λ〈A0,Q0〉) is a
sequence [〈A0, Q0〉, 〈A1, Q1〉, 〈A2, Q2〉, . . . , 〈An, Qn〉 . . . ] that can be thought of as
an exchange of arguments between two parties, a proponent (evenly-indexed argu-
ments) and an opponent (oddly-indexed arguments). Each 〈Ai, Qi〉 is a defeater for
the previous argument 〈Ai−1, Qi−1〉 in the sequence, i > 0. In order to avoid falla-
cious or ill-formed reasoning (e.g. infinite argumentation lines), dialectics imposes
additional constraints on such an argument exchange to be considered rationally
acceptable. Acceptable argumentation lines can be proven to be finite. An in-depth
treatment of such acceptability constraints can be found in Garcia and Simari’s
work.18 Given a DeLP program P and an initial argument 〈A0, Q0〉, the set of all
acceptable argumentation lines starting in 〈A0, Q0〉 accounts for a whole dialectical
analysis for 〈A0, Q0〉 (i.e., all possible dialogues about 〈A0, Q0〉 between proponent
and opponent), formalized as a dialectical tree.

Nodes in a dialectical tree T〈A0,Q0〉 can be marked as undefeated and defeated
nodes (U-nodes and D-nodes, resp.). A dialectical tree will be marked as an and-or

tree: all leaves in T〈A0,Q0〉 will be marked U-nodes (as they have no defeaters), and
every inner node is to be marked as D-node iff it has at least one U-node as a child,
and as U-node otherwise. An argument 〈A0, Q0〉 is ultimately accepted as valid (or
warranted) w.r.t. a DeLP program P iff the root of its associated dialectical tree
T〈A0,Q0〉 is labeled as U-node.c

cAn alternative definition for warrant can be provided on the basis of the length of argumentation

lines: an argumentation line [〈A0, Q0〉, 〈A1, Q1〉 . . . , 〈Ak, Qk〉] is won iff k is odd, and lost other-

wise. The root node of a dialectical tree is warranted iff every argumentation line in T〈A0,Q0〉 is
won.53
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Given a DeLP program P, solving a query Q w.r.t. P accounts for determining
whether Q is supported by (at least) one warranted argument. Different doxastic
attitudes can be distinguished as follows:

(1) Yes: accounts for believing Q iff there is at least one warranted argument sup-
porting Q on the basis of P.

(2) No: accounts for believing ∼Q iff there is at least one warranted argument
supporting ∼Q on the basis of P.

(3) Undecided : neither Q nor ∼Q are warranted w.r.t. P.
(4) Unknown: Q does not belong to the signature of P.

Thus, according to DeLP semantics, given a program P, solving a query Q —
for any Q ∈ Pred(P)— will result in a value belonging to the set Ans = {Yes, No,
Undecided}.
Example 2.3. Consider the query candidate(john) solved w.r.t. the program
Pbank (see Fig. 1). As shown in Example 2.1, this query would start a search for
arguments supporting candidate(john), and argument 〈A1, candidate(john)〉 will
be found. In order to determine whether this argument is warranted, its dialectical
tree will be computed: as shown in Example 2.1, there is only one (blocking) defeater
for 〈A1, candidate(john)〉, namely 〈A2,∼goodincome(john)〉. This defeater, on its
turn, has another (proper) defeater 〈A3, solvent(john)〉, with

A3 = {(solvent(john) −≺ info(john, , phdstudent, ), richfamily(john));

(richfamily(john) −≺ family record(john, rich))}

The resulting (marked) dialectical tree is depicted in Fig. 2(i). As the root node of
T〈A1,candidate(john)〉 is a U -node, the answer to candidate(john) is Y es.

Consider now the query candidate(ajax). As in John’s case, there is an argument
supporting this query, namely 〈B1, candidate(ajax)〉, with:

B1 = {(candidate(ajax) −≺ profile ok(ajax));

(profile ok(ajax) −≺ goodincome(ajax), trustctry(ajax, greece));

(trustctry(ajax, greece) −≺ info(ajax, greece, , ), credible(greece));

(goodincome(ajax) −≺ info(ajax, , , 350), 350 > 300)};

which is defeated by the argument 〈B2,∼goodincome(ajax)〉, with

B2 = {(∼goodincome(ajax) −≺ ∼solvent(ajax));

(∼solvent(ajax) −≺ info(ajax, , phdstudent, )};

Hence the associated dialectical tree for candidate(ajax) has two nodes, with
the root labeled as D-node (Fig. 2(ii)). The original argument for candidate(ajax)
is therefore not warranted.

Let us now consider the query candidate(danae). In this case, there is an argu-
ment 〈C1, candidate(danae)〉 that has no defeaters (and hence it is warranted) for
concluding that Danae has the right profile for the bank, with:

C1 = {(candidate(danae) −≺ profile ok(danae));
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(profile ok(danae) −≺ goodincome(danae), trustctry(danae, greece));

(trustctry(greece) −≺ info(danae, greece, , ), credible(greece));

(goodincome(danae) −≺ info(danae, , , 10000), 10000 > 300)}

As the argument has no defeaters, the resulting dialectical tree will have a unique
node, as depicted in Fig. 2(iii).

Note that there is also a second argument without defeaters supporting the
query candidate(danae), namely 〈C2, candidate(danae)〉, with:

C2 = {(candidate(danae) −≺ info(danae, , , 10000), req loan(danae, 1000),

1000 < 10000 ∗ 10, trustctry(danae, greece));

(trustctry(danae, greece) −≺ info(danae, greece, , ), credible(greece))}.

For this particular argument, the same analysis as for argument C1 can be applied.
Finally, there exists an empty argument D1 for concluding candidate(peter)

(i.e., D1 = ∅). Note that this argument is empty as candidate(peter) follows from
the strict knowledge in Pbank (i.e., Peter is a candidate for a loan as he is a million-
aire.d). As this argument is empty, made up of strict derivations, it has no defeaters,
and consequently it is also warranted. The resulting dialectical tree is depicted in
Fig. 2(iv).

AU
1

AD
2

AU
3

6

6

BD
1

BU
2

6

CU
1 DU

1

(i) (ii) (iii) (iv)

Fig. 2. Dialectical trees for queries: (i) candidate(john), (ii) candidate(ajax), (iii)

candidate(danae), and (iv) candidate(peter) w.r.t. Pbank

3. Web-based Forms: From HTML to XForms

The notion of form is a central structural abstraction for data collection, storage, and
retrieval in information management systems. From the very beginning of the World
Wide Web, HTML standards included the possibility of form design along with a
number of ways for allowing interactive behavior by means of control techniques

dAs this is a toy example, we assume that millonaires are granted loans independently of the
amount requested (which is clearly not the case in a real-world situation).
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(checkboxes, radio buttons, etc.). Forms provide a standard way of allowing the user
to send information back to the server by means of different technologies to verify
and validate data (e.g., CGI scripting). A number of programming technologies —in
particular along with the evolution of the Java programming language— were later
developed, enabling the creation of interactive web applications which outperformed
static web pages. Dynamic HTML (DHTML) favored the development of client-
side, in-browser applications, by embedding pieces of programming code written
in script languages (like JavaScript or VBScript). The growing popularity of e-
commerce technologies as well as the envisioning of the Semantic Web motivated the
specification of sophisticated standards for web-based forms, notably XForms.54e

In spite of the evolution of web-based form technologies, most form designers
perform validation of form fields by enforcing constraints (e.g., numeric ranges)
encoded as pieces of imperative code in a scripting language (e.g., JavaScript).
Thus, validation of data is done client-side, and the form data is finally processed
by a program located in a remote server (usually accessing some sort of database).
However, in many cases there are some emerging features which can be inferred as
part of the “intended meaning” of the form without being field values themselves.
Thus, in the case of a bank loan application such as the one discussed in the previous
sections, a concept like reliable client, modelled on the basis of the field values for
a particular customer, could prove useful for the form designer in order to codify
decision making issues associated with form processing. To identify every relevant
attributes needed to infer a concept like “reliable customer” using only imperative
code may be a difficult task, as in complex situations such conclusions are defeasible
(particularly in presence of incomplete and potentially inconsistent information).

To address the above problem, the concept of form can be suitably extended
to formalize such complex scenarios on the basis of DeLP by means of defeasible
attributes, as we will see in the next section. In order to do this, we will first provide
a rather generic definition of the concept of form on the basis of the notions of form
schema and form instance, which will prove useful for presenting our approach.

Definition 3.1. (Form Schema. Form Instance) A form schema is a pair
F=〈F, T 〉, where F = [f1, f2, . . . , fn] is a list of form fields and T = [T1, . . . , Tn]
is a list of types (each of them consisting of a set of values). Given a form schema
F=〈F, T 〉 defined as above, a form instance based on F with value V (denoted FV )
is a pair FV = 〈F, V 〉, where V = [v1, . . . , vn] is a list of values such that every
vi ∈ Ti is the associated value for fi ∈ F .

Example 3.1. Let F = [name, profession, income, amountreq, country] and T

= [string, string, real, integer, string], where string, real, and integer are type
names with the usual meaning, then F = 〈F, T 〉 is a form schema. Let V = [john,
phdstudent, 400, 2000, krakosia], then FV = 〈F, V 〉 is a form instance based on F .

eFor an in-depth analysis, see http://www.w3.org.
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Name: John

Profession: PhDStudent

Income: 400

Amount requested: 2000

Country: Krakosia�
 �	Submit
�
 �	Validate

Fig. 3. Form view for the loan application

Figure 3 shows the typical graphical appearance of a web-based form according
to the form schema given in Ex. 3.1. Note that according to Def. 3.1, control actions
associated with the form (e.g., submit, validate, etc.) are not considered as elements
in the form schema.

4. Integrating Forms with DeLP: Forms with Defeasible Attributes

In this section we will show how to extend traditional web-based forms to incorpo-
rate defeasible knowledge expressed in terms of a DeLP program, characterizing the
notion of forms with defeasible attributes or δ-forms. Our goal is to provide a way to
associate a DeLP program P with an arbitrary form schema (which will correspond
to a number of different possible form instances). The program P is assumed to
represent declarative knowledge associated with the problem domain of the form
schema. Thus, as discussed in the previous example, a form schema corresponding
to a bank application could have an associated DeLP program which represents
tentative (and possibly conflicting) policies for granting loans.

Given a form schema F=〈F, T 〉, and a particular form instance FV , we will
capture the factual knowledge involved in FV in terms of a set facts(FV ) of DeLP
facts. Such facts will be obtained by introducing new predicate names associated
with those field names in a form F , and new constant names corresponding to the
values present in V . Formally:

Definition 4.1. (Set of facts) Let F= 〈F, T 〉 be a form schema, with F=[f1,
. . . , fn], and let FV be a form instance. We define the set facts(FV ) =def {f1(F , v1),
f2(F , v2), . . . , fn(F , vn)}.

Example 4.1. Given the form instance FV in Example 3.1, the corresponding
set facts(FV ) is {name(F , john), profession(F , phdstudent), income(F , 400),
amountreq(F , 2000), country(F , krakosia)}.

Next we will show how field values can be integrated with an arbitrary DeLP
program P, characterizing thus the concept of δ-forms. Formally:

Definition 4.2. (Form schema with defeasible attributes. δ-form instance)
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Let F = 〈F, T 〉 be a form schema, and P = (Π,∆) a DeLP program. A form schema
with defeasible attributes (or δ-form schema) D is a pair 〈F ,P〉. If V is a set of values
for the form F , a δ-form instance DV is the pair 〈FV ,P〉. The set of defeasible
attributes for DV is defined as the set of predicates Pred(Π ∪ facts(FV ),∆).

Given a δ-form schema 〈F ,P〉, the above definition aims at identifying features
or attributes in the form F encoded by the form designer as distinguished predicates
in the program P. Such attributes are said to be defeasible, as their associated
value will be determined by DeLP queries solved w.r.t. the DeLP program (Π ∪
facts(FV ),∆). Hence, changing the field values in the form F or changing the
underlying DeLP program P will result in changing the value for these attributes.
As stated before, defeasible attributes will represent relevant features for the form
designer, whose value depends on the DeLP program encoding relevant domain
knowledge with the addition of particular facts which represent the field values for
a given form instance.

Example 4.2. Let F = 〈F, T 〉 be the form schema given in Example 3.1, and
consider the program Pbank

′ = Pbank\{(1), . . . , (6)} ∪ {rule1} ∪ {rule2}, where

rule1 = info(N, C, P, I) ← name(F , N), country(F , C),
profession(F , P ), income(F , I)

rule2 = req loan(N, A) ← name(F , N), amountreq(F , A);

i.e., the program given in Fig. 1 excluding user-provided information (rules (1) to
(6)), along with two additional strict rules rule1 and rule2 linking the form F with
the DeLP program Pbank.

LetD = 〈F ,Pbank
′〉 be a δ-form schema. According to the DeLP program Pbank

′,
one defeasible attribute in D is candidate/1 ∈ Pred(Pbank

′). Suppose now that four
different users John, Ajax, Danae and Peter fill in this δ-form according to the data
given in Example 2.1 and following the form schema given in Example 3.1. Form
fields in the form F would be filled in with different values, and for every particular
user u a δ-form instance Du would be obtained. Thus, when analyzing for example
the query “candidate(john)”, the δ-form instance Djohn would involve providing all
his particular user details, which will be present as a set of DeLP facts (Def. 4.1).

Along with the two additional strict rules given above, reasoning from Pbank
′ ∪

facts(Djohn) would result in the dialectical analysis shown in Example 2.3, deter-
mining that candidate(john) is warranted. The same applies for the other three
users with respect to candidate(ajax), candidate(danae), and candidate(peter),
respectively.

In the previous example, we have seen how form fields (Def. 3.1) can be referred
as predicate names in DeLP. Similarly, the notion of δ-form (Def. 4.2) distinguish
some predicate names as defeasible attributes (as in the case of candidate/1 men-
tioned before). In order to use such attributes in the context of web-based applica-
tions, we will encode DeLP programs in a suitable markup language called X-DeLP.
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5. X-DeLP: encoding DeLP in Web-based forms

In this Section we will present the main features of X-DeLP, a scripting language for
encoding DeLP programs in XML. XDeLP supports the representation of defeasible
knowledge bases by augmenting XHTML with tags that allow to represent defeasible
logic programs. XDeLP can be embedded directly in XHTML documents or used
in XML documents. This design choice provides several advantages (as remarked
by Heflin et. al.55 in the context of SHOE): (1) web authors are more confortable
with XML syntax as there are many commercial applications to edit it; (2) its
knowledge contents can be used in other XML aware applications, and (3) the XSLT
style sheet standard 56 can be used to render it in a way that is adequate for human
understanding. In order to make this article self-contained, we will briefly summarize
next the main elements of the XML technology. A more in-depth discussion can be
found elsewhere.57

Markup languages based on XML consists of a set of element types which
serve to define types of documents and are referred to as Document Type De-
finitions or DTDs for short. XML allows authors to create their own markup
tags (e.g., <author>). Well-formed XML documents are documents that meet
the constraints in the XML specification, whereas valid XML documents are
those which are well-formed and additionally meet all of the constraints speci-
fied in the DTD. XML provides start tags (e.g., <foo>), end tags (e.g., </foo>),
and empty tags (e.g., <foo bar=“baz”/>. Empty tags can have attributes (e.g.,
bar) that take a value (e.g., baz ). Elements that contain some mixture of
markup/character data must have matching start- and end-tags (e.g., <country
gov=“democracy”>Krakosia</country>).

Element type declarations allow an XML application to constrain the elements
that can occur in the document and to specify the order in which can occur. The
expression <!ELEMENT foo EMPTY> declares foo elements to be empty, whereas
the expression <!ELEMENT foo (apple|orange|banana)> declares that the element
foo can contain exactly one element in the set {apple, orange, banana}. Addition-
ally, XML allows to declare element types that can contain other elements. The
expression <!ELEMENT person (name, address, phone?)> declares that a per-
son has a name, an address, and optionally a phone number. Zero or more occur-
rences can be specified as in <!ELEMENT books (book)*>, one or more occurrences
as in <!ELEMENT books (book)+>. Character data is denoted by the keyword
#PCDATA as in <!ELEMENT quotation #PCDATA>. Attribute list declarations
serve to specify the name, type, and optionally the default value of the attributes
associated with an element. Thus, the expression <!ATTLIST foo bar CDATA
#REQUIRED> means that the element foo has the attribute bar containing char-
acter data which will be ignored by the XML parser. The modifier #REQUIRED
means that giving a value to the attribute is mandatory. Other modifiers such as
#IMPLIED are possible meaning that the value for the attribute will be computed
by an external application.
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5.1. XDeLP: a syntactic characterization in XML

Next we will present a syntactic characterization of X-DeLP using XML in order
to illustrate how DeLP features can be encoded into web-based forms. For the
sake of example, our presentation will be based on the Pbank program presented
in Section 2. First, an XML tag <delp> is required to define DeLP programs as
distinguished entities in an XML document. In our case study the program is named
Pbank, so that the resulting XML representation would be as shown below.

<delp id=“PBank” version=“1.0”>

Clearly, it may be desirable to annotate programs with comments, e.g.:

<comment>Program for defining criteria for granting

a loan application.</comment>

Within an XML setting, a DeLP program will be composed by definitions of rule-
schemas and declarations of rule and fact instances. The corresponding DTD rep-
resentation follows:

<!ELEMENT delp (comment?, definitions, declarations)>

<!ELEMENT comment PCDATA>

<!ATTLIST delp id CDATA #REQUIRED version CDATA #REQUIRED>

The definition of a program involves the specification of the atoms and rule
schemas allowed. For example, to define an atom info(Name, Country, Profession,
Income) the DTD representation would be as follows:

<def-atom name=“info” arity=“4”>

<def-arg pos=“1” param=“Name” type=“string” />

<def-arg pos=“2” param=“Country” type=“string” />

<def-arg pos=“3” param=“Profession” type=“string” />

<def-arg pos=“4” param=“Income” type=“real” />

</def-atom>

This DTD is indicating that the atom name is info with arity 4. Besides, the name
and type of each parameter for info is specified. The definition of atoms with arity
0 is also possible, accounting for propositional DeLP programs. The corresponding
part of the DTD for atoms follows below:

<!ELEMENT definitions (def-language, def-rules)> <!ELEMENT def-language (def-

atom)*>

<!ELEMENT def-atom (def-arg)*>

<!ATTLIST def-atom name CDATA #REQUIRED arity CDATA #REQUIRED>

<!ELEMENT def-arg EMPTY>

<!ATTLIST def-arg pos CDATA #REQUIRED param CDATA #REQUIRED

type CDATA #REQUIRED>
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DeLP rules will have a unique ID and an associated type (defeasible or strict). In
particular, arguments (parameters) in literals can be anonymous by using the dash
qualifier.f The attribute negated could be associated with atoms in the program. A
given atom A with predicate name L which appears as head of a rule in a program
can take yes or no as possible values. In the first case, A stands for ∼L (i.e., L is
preceded by strict negation), whereas in the second case it just stands for L. The
value no is adopted by default. A similar analysis applies for those atoms present
in the body of a rule. However, in this case the attribute negated can have three
possible values (no, yes, and default), which stand for L, ∼L, and not L (default
negation), respectively. The DTD definitions follow:

<!ELEMENT def-rules (def-rule)*>

<!ATTLIST def-rule id CDATA #REQUIRED

type (defeasible | strict) #REQUIRED>

<!ELEMENT def-rule (comment?,def-head, def-body)>

<!ELEMENT def-head (arg)*>

<!ATTLIST def-head name CDATA #REQUIRED negated (no | yes) “no”>

<!ELEMENT arg EMPTY>

<!ATTLIST arg pos CDATA #REQUIRED value (CDATA|dash) #REQUIRED>

<!ELEMENT def-body (def-body-atom)+>

<!ELEMENT def-body-atom (arg)*>

<!ATTLIST def-body-atom name CDATA #REQUIRED

negated (no | yes | default) “no”>

Example 5.1. Consider the program Pbank in Figure 1. The strict rule (22)
candidate(P ) ← millionaire(P ) can be expressed as follows:

<def-rule id=“22” type=“strict”>

<def-head name=“candidate” negated=“no”>

<arg pos=“1” param=“P” type=“string” />

</def-head>

<def-body>

<def-body-atom name=“millionaire” negated=“no”>

<arg pos=“1” value=“P” />

</def-body-atom>

</def-body>

</def-rule>

Analogously, rule (16) will be expressed as:

<def-rule id=“16” type=“defeasible”>

<def-head name=“trustctry” negated=“no”>

fNote that this corresponds to the “underscore” anonymous variable in the Prolog programming
language.
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<arg pos=“1” param=“P” type=“string” />

<arg pos=“2” param=“Ctry” type=“string” />

</def-head>

<def-body>

<def-body-atom name=“info” negated=“no”>

<arg pos=“1” value=“P” />

<arg pos=“2” value=“Ctry” />

<arg pos=“3” value=“dash” />

<arg pos=“4” value=“dash” />

</def-body-atom>

<def-body-atom name=“credible” negated=“no”>

<arg pos=“1” value=“Ctry” />

</def-body-atom>

</def-body>

</def-rule>

Given a DeLP program P, the previous DTD representation accounts for an
XML-based formulation of P. However, modeling the concept of argument requires
the ground instantiation of rules. The DTD definitions follow below.

<!ELEMENT declarations (rule-instances, facts)>

<!ELEMENT rule-instances (rule-instance)*>

<!ATTLIST rule-instance id CDATA #REQUIRED>

<!ELEMENT rule-instance (subst)*>

<!ELEMENT subst EMPTY>

<!ATTLIST subst param CDATA #REQUIRED value CDATA #REQUIRED>

<!ELEMENT facts (fact)*>

<!ELEMENT fact (arg)*>

<!ATTLIST fact negated (yes | no) “no”

type (fact | assumption) “fact” name CDATA #REQUIRED>

Example 5.2. Facts naturally correspond to ground information. Thus, using our
DTD representation, the fact that John is PhDStudent from Krakosia and has an
income of $400 (info(john, krakosia, phdstudent, 400)) will be encoded as:

<fact negated=“no” type=“fact” name=“info”>

<arg pos=“1” value=“john”/>

<arg pos=“2” value=“krakosia”/>

<arg pos=“3” value=“phdstudent”/>

<arg pos=“4” value=“400”/>

</fact>

Analogously, in order to represent the rule instance:

trustctry(john, krakosia) −≺ info(john, krakosia, , ), credible(krakosia),

we will write:
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<rule-instance id=“16”>

<subst param=“P” value=“john” />

<subst param=“Ctry” value=“krakosia” />

</rule-instance>

Finally, suitable annotation tags are provided to represent arguments, argumen-
tation lines, and dialectical trees in XDeLP. An argument 〈A,H〉 will be represented
by a fact instance H and a set A of rule instances, namely:

<argument>

<rule-instances>. . . XML representation for A. . . </rule-instances>

<fact>. . . XML representation for H. . . </fact>

</argument>

A tag named <complete-argument> is also provided for representing the set of
all rules (strict and defeasible) used for the derivation of an argument.g A tag named
<argument-derivation> is also provided in order to represent the tree supporting
the derivation of an argument. Finally, tags for representing argument lines and
argument trees are provided. Each node of an argument tree has an associated
epistemic status that can take either one of two values—defeated or undefeated.
Next we present the corresponding DTD definitions:

<!ELEMENT argument (rule-instances, fact)>
<!ELEMENT complete-argument

(rule-instances, facts, fact)>

<!ELEMENT argument-derivation (fact, argument-derivation*)>
<!ELEMENT argument-line (argument)*>

<!ELEMENT argument-tree (argument, argument-tree*)>

<!ATTLIST argument-tree epistemic-status (defeated | undefeated) #IMPLIED>

5.2. Redefining XDeLP Programs: Towards Argument-based

Ontologies

A common way to provide semantics to documents on the web is through the use of
ontologies.58 In computer science, ontologies establish a joint terminology between
members of a community of interest (e.g., among human or automated agents),
which include machine-interpretable definitions of basic concepts in the domain and
relations among them. Ontologies are usually expressed in logic-based languages,
as they provide a declarative way of expressing knowledge along with inference
capabilities to reason about the concepts being represented. In this context, XDeLP
offers an interesting alternative for modeling ontologies (using predicate definitions)
and performing inferences on the basis of the underlying argumentative engine. In
an ontological setting, a DeLP program P (Def. 2.1) can be thought of as a set of

gNote that the definition of argument only requires to consider a finite set of ground instances of
defeasible rules. However, for implementation purposes it may be useful to keep track of all the
rules (strict and defeasible) used in constructing an argument.2
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predicate definitions, i.e. P =def {PP
1 , . . . , PP

k }. Thus, in our example concerning
bank loans, the program Pbank (Fig. 1) provides the definition of a number of
predicates (candidate, trustctry, etc.). Recent research 59 has been oriented towards
providing a first approach to formalizing argument-based ontologies in which XDeLP
can be used for ontology interchange in the context of the Semantic Web.

Formalizing techniques for merging and refining ontologies 60,61 is an active
area of research in several disciplines (such as deductive databases and information-
integration). In particular, ontologies may be subject to refinements or changes in
the light of new information. To illustrate our approach, we will show a näıve ap-
proach of how XDeLP can be used to model such changes by means of the notion of
program redefinition, a concept borrowed from implementations of logic program-
ming.h A redefinition of a program P1 w.r.t. another program P2 is a new DeLP
program P that includes all predicate definitions in P1 and P2, except for those
predicates in P1 which are also defined in P2. Formally:

Definition 5.1. (Redefinition) Let P1,P2 be two DeLP programs, such that
P1 defines the predicates R1, R2, . . . , Rn, and P2 defines the predicates S1, . . . ,
Sm. The redefinition of P1 w.r.t. P2, denoted P1/ P2, is a new program P ′ defined
as follows:
P ′ = P1/ P2 =def {RP1

1 , . . . , RP1
n } ∪ {S

P2
1 , . . . , SP2

m } \ { RP1
i | ∃SP2

j in P2, with
name(Ri) = name(Sj), and arity(Ri)=arity(Sj)}.

Thus, redefining a DeLP program basically involves providing new predicate
definitions, which supersede already existing ones (if any).

Let us suppose that the bank gets a number of basic criteria from the Homeland
Security Office (HSO) concerning how to assess trustworthiness of countries. Such
criteria could be encoded by HSO programmers in a DeLP program Psec as shown
in Fig. 5: there is information about greece and krakosia being countries with demo-
cratic governments, and the fact that krakosia is a country at war. Defeasible rules
provide tentative criteria for making a country credible: democratic countries are
credible, unless they are at war or have corrupt governments. The bank authorities
could therefore merge their knowledge base Pbank by considering the information
given in Psec. The resulting redefined program Pbank/Psec would consider a more
detailed analysis for countries, as factors such as political system, political situation,
etc. would be taken into account when granting loans, as shown in the following
example.

Example 5.3. Consider the DeLP programs Pbank={(1), . . . , (20)} and
Psec={(1′), . . . , (6′)} from Fig. 1 and 5, resp. Computing Pbank/Psec gives as a
result a new DeLP program P ′ = {(1), . . . , (20)} ∪ {(1’), . . . , (6’)} \ {(10),(11)},
in which the definition of credible provided by Pbank is replaced by the new de-

hIn most Prolog implementations, the result of the redefinition of the current program P1 w.r.t.
another program P2 can be modelled by the command reconsult(P2).62
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finition given in Psec. Solving the query “candidate(john)” w.r.t. P ′ involves a
search for arguments similar to the one perfomed in Example 2.3: an argument
〈A′1, candidate(john)〉 supports the query candidate(john),i with:

A′
1 = { (candidate(john) −≺ profile ok(john));

(profile ok(john) −≺ goodincome(john), trustctry(john, krakosia));
(trustctry(krakosia) −≺ info(john, krakosia, , ), credible(krakosia));

(credible(krakosia) −≺ country(krakosia, democracy));
(goodincome(john) −≺ info(john, , , 400), 400 > 300) }.

As in Example 2.3, this argument is defeated by another argument 〈A2,∼
goodincome(john)〉, which on its turn is defeated by another argument
〈A3, solvent(john)〉. In all these arguments, however, the redefined program allows
a fourth argument to be inferred, namely 〈A4,∼credible(krakosia)〉 with:

A4 = {∼credible(krakosia) −≺ country(krakosia, democracy),

country(krakosia, atwar)}

which is a proper defeater for 〈A′1, candidate(john)〉. As a result, the root of the
dialectical tree for the query “candidate(john)” is marked as D-node, as shown in
Fig. 4.

A′D1

AD
2 AU

4

AU
3

6

�
��

A
AK

Fig. 4. Dialectical trees for query candidate(john) w.r.t. Pbank/Psec

Note that redefining a program will usually result in providing more up-to-date
information associated with particular predicates. Thus, arguments in a program
P1 which had a particular epistemic status (e.g. warranted) might no longer keep
it in a redefined version P1/P2.

6. XDeLP: implementation issues

6.1. Embedding XDeLP in Client-side Code

As already mentioned before, programmers usually perform some validations or
pre-processing in data contained in a form by attaching some imperative, script-
like language code to buttons (e.g. in Javascript). Such pieces of code allow typically

iNote that argument 〈A′
1, candidate(john)〉 involves defeasible information about Krakosia coming

from Psec, in contrast with the original argument 〈A1, candidate(john)〉.
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(1′) country(greece, democracy)
(2′) country(krakosia, democracy)

(3′) country(krakosia, atwar)

(4′) credible(Ctry) −≺ country(Ctry, democracy).
(5′) ∼credible(Ctry) −≺ country(Ctry, democracy), country(Ctry, atwar)

(6′) ∼credible(Ctry) −≺ country(Ctry, democracy), country(Ctry, corruptgovt)

Fig. 5. Defeasible logic program Psec from the HSO

to validate field values, permitting to determine whether the intended meaning of
such fields is coherent according to some criteria established by the form designer.
However, as we have already seen in previous sections, there are many cases in
which it may be useful to include as part of those validations some features which
can be inferred as part of the “intended meaning” of the form without being field
values themselves.

On the basis of the XDeLP formalization presented in Section 5, we propose to
integrate the DeLP inference engine with a web-browser, extending the JavaScript
programmingj language with suitable primitives. The architecture for the proposed
approach is depicted in Fig. 7. The extension to JavaScript consists of primitives
for calling the DeLP engine services. This is implemented through specialized built-
in boolean messages like warranted(progid, query), whose intended meaning is to
determine if there exists a warranted literal query w.r.t. form formid. Similar
functions are implemented for other possible values for defeasible attributes (e.g.,
undecided). Next we show an example of how the proposed approach works in a
JavaScript client-side script.

Example 6.1. Suppose P is a δ-form as described in Example 3.1, which in turn is
written in XForms and has form1 as its identifier. Then, a JavaScript programmer
would be capable of writing the code embedded in a handler function for the Validate
button as shown in Fig. 6.

6.2. Computing Arguments Efficiently in DeLP

As stated before, XDeLP solves queries on the basis of the DeLP argumentative
formalism. As performing defeasible argumentation is a computationally complex
task, an abstract machine called JAM (Justification Abstract Machine) has been
specially developed for an efficient implementation of DeLP.18 JAM provides an
argument-based extension of the traditional WAM (Warren’s Abstract Machine)
for Prolog. A full-fledged implementation of DeLP is available online,k including
facilities for visualizing arguments and dialectical trees. On the basis of this ab-
stract machine a Java-based Integrated Development Environment (IDE) for DeLP

jFor the sake of simplicity we restrict ourselves to the case of JavaScript for our analysis. The
approach can be naturally extended to any other scripting language.
kSee http://lidia.cs.uns.edu.ar/DeLP



March 1, 2006 18:12 WSPC/ws-ijitdm article

Defeasible Reasoning in Web-based Forms through Argumentation 23

<script language=“JavaScript”>
function validate()
{

if( form1.warranted(pbank, candidate(form1.name.value)) )
alert( “The requested loan will be probably granted.” +

“We will contact you in a week.” );
else

alert( “Your case will be analyzed and ” +
“we will contact you in a month.” );

}
</script>

Fig. 6. An example of JavaScript function attached to a form button
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Fig. 7. A framework for embedding the DeLP inference engine in a browser application

has also been developed,63 which was used in our experiments as a prototype for
embedding XDELP in a web browser. This Java version of DeLP allows to compile
DeLP code into JAM opcodes. A visual environment for interacting with DeLP
programs is provided. Several features leading to efficient implementations of DeLP
have also been recently studied, in particular those related to comparing conflicting
arguments by specificity,47 computing dialectical trees efficiently2 and extending
DeLP to incorporate possibilistic reasoning.6,64,3 Equivalence results with other ex-
tensions of logic programming have also been established.40

Performing defeasible argumentation is a computationally complex task. Cecchi
et. al.65 have proved that the complexity of the decision problem “whether a set of
defeasible rules is an argument for a literal under a defeasible logic logic program”
is P-complete, and the existence of an argument for a literal to be in NP.



March 1, 2006 18:12 WSPC/ws-ijitdm article
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7. Related work

To the best of our knowledge there are no other works in the area of introduc-
ing defeasible knowledge in web-based forms as done in this paper. Recent re-
search 16 has been focused on developing a methodology for designing form-based
decision support systems, which uses factoring and synthesis to process knowledge
involved in forms. The resulting framework allows flexible creation and modification
of computer-generated forms useful for decision making and suited for simplifying
the process of report generation. However, even though this approach exploits the
semantics of the knowledge involved in forms, it does not provide any connection
with web-based systems nor with handling defeasible knowledge.

A pioneering work in the area of ontology representation for the semantic web
is SHOE.55 As in our approach, SHOE combines features of markup languages,
knowledge representation, and ontologies. Its basic structure consists of ontologies,
which define rules that guide what kind of assertions may be made and what kind
of inferences may be drawn on ground assertions, and instances that make asser-
tions based on those rules. Unlike to our approach, SHOE only implements strict
Horn-rules while we also provide capabilities for the representation of defeasible
rules. Besides, SHOE is designed to eliminate the possibility of contradictions as it
does not permit logical negation. Instead, our approach not only allows for the use
of negations but it handles logical contradictions by means of a dialectical analy-
sis, making it suitable for interaction among agents in the realm of semantic web
applications.

In similar direction to our work, rule-based defeasible reasoning in the context
of the Semantic Web has motivated the development of alternative systems such as
DR-DEVICE,13 which is capable of reasoning about RDF metadata over multiple
Web sources using defeasible logic rules.12,11 In contrast with our approach, this
system is implemented on top of the CLIPS production rule system, whereas our
proposal relies on the computation of warrant performed by the DeLP inference
engine using logic programming techniques. Furthermore, comparison among rules
in defeasible logic is performed on the basis of a superiority relationship, whereas
our proposal relies on a modular comparison criterion among arguments. Besides,
DeLP does not need to be supplied with defeater rules because the system will
find all possible counterarguments automatically on the basis of the arguments it is
able to build, and will decide on the defeat relation using the provided comparison
criterion. Thus, a DeLP programmer does not need to encode exceptions explicitly.

The Rule Markup Initiative66 constitutes a joint effort towards defining a shared
Rule Markup Language (RuleML), permitting both forward (bottom-up) and back-
ward (top-down) rules in XML for deduction, rewriting, and further inferential-
transformational tasks. Our approach to encoding DeLP programs shares in part
some of the goals of the RuleML initiative. Nevertheless, the current RuleML lan-
guage does not provide tags for integrating defeasible implications, arguments, and
argumentation trees, as presented here.
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As discussed in Section 5.2, XDeLP offers a knowledge representation language
that can be used for characterizing ontologies, using the underlying argumentative
engine to perform inferences. In this respect, using argumentation for modeling on-
tology engineering has been recently focus of research from a social perspective, i.e.,
defining a shared ontology as a social process. In this setting, different participants
collaborate in developing a shared ontology. During the discussion, participants ex-
change arguments which may give support to or object certain ontology engineering
decisions. Tempich et. al.67 present an ontology which formalizes the main concepts
which are used in an ontology engineering discussion and thus enables tracking ar-
guments and allows for inconsistency detection. Their approach, however, differs
from ours, in the sense that the focus is in providing an ontology for modeling argu-
mentation, whereas our proposal focuses on using XDeLP language as a vehicle for
modeling ontologies in general and using argument-based inference as a reasoning
mechanism.

Wagner68 points out the need of representing negative information in Seman-
tic Web applications. In this regard, mainstream developments concerning rea-
soning in the web propose using languages based on very expressive Description
Logics (DL)69 (such as DAML,70 OIL,71 DAML+OIL,72 and OWL73) for repre-
senting ontologies. Although those approaches combine successfully expressiveness
and efficiency issues, they fail to deal with inconsistent knowledge bases as cur-
rent systems (notably RACER74) only perform a consistency check while leaving
the burden of eliminating inconsistencies to the programmer. For instance, con-
sider the following DL (inconsistent) knowledge base KB = (TBox ,ABox ) where
TBox = {(phdstudent v ¬candidate); (phdstudent u rich v candidate)}, and
ABox = {phdstudent(john), rich(john)} establishing that PhD students are not
candidates for loans unless they are rich and that John is both a PhD student
and rich. Clearly, both candidate(john) and ¬candidate(john) can be derived. In
contrast to those languages, DeLP is also capable of handling inconsistencies in a
natural transparent way as we show next.

Relating DL and Logic Programming, Grosof et. al.75 propose an algo-
rithm for translating a class of DL programs to Prolog. This class of pro-
grams is defined by the intersection of DL with Logic Programming, char-
acterizing the so-called Description Logic Programming. Part of our research
is currently focused on extending those results to DeLP. For instance, KB
defined above could be translated as an equivalent defeasible logic program
P = (Π,∆) where Π = {phdstudent(john), rich(john)} and ∆ = {(∼
candidate(X) −≺ phdstudent(X)); (candidate(X) −≺ phstudent(X), rich(X))}.
Two arguments can be derived w.r.t. program P, namely 〈A1,∼candidate(john)〉
and 〈A2, candidate(john)〉, where A1 = {∼candidate(john) −≺ phdstudent(john)}
and A2 = {candidate(john) −≺ phdstudent(john), rich(john)}. Using specificity
as the comparison criterion, argument A2 will result warranted, thus solving the
contradicting situation. Note that while the output of the procedure proposed by
Grosof et. al. (when a given knowledge base is used as an input) is expressive enough
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for turning standard Prolog rules into defeasible rules, it does not take into account
the treatment of explicit negation, as required in DeLP.

8. Conclusions and Future Work

We have presented a novel argument-based approach for enriching traditional forms
for web-based environments, which can be suitably adapted to existing markup
language technologies like XHTML. As discussed in the introduction, our proposal
involves providing the possibility of modeling inferences based on concepts which
are part of the intended meaning of a form, which we have formalized as defeasible
attributes.

We have shown that the use of an embedded DeLP interpreter on the client side
allows the form designer to develop richer form schemas, in which the interaction
of defeasible attributes is taken into account as part of the “behavior” of the form.
Knowledge bases for forms are expressed in a declarative way, making easier to
enrich a form by for example merging two existing knowledge bases. It must be
noted that our approach assumes that all available information is encoded on the
client side (browser application), which arises a number of privacy and security
issues. In the case of the bank application, the bank would probably want to keep
its criteria undisclosed, so that they could not be misused by the client or by third
parties. In such cases client-side security considerations would be in order (e.g. by
incorporating encryption techniques), which are currently an issue under research.

Implementing program redefinition as described in Section 5.2 is quite straight-
forward, and offers an attractive possibility for integrating defeasible knowledge
bases from different sources (as Pbank and Psec). Clearly, additional ontological
considerations (e.g. unique name assumption, etc.) are required for such merging
operations; extending our formalization to handle such considerations is part of our
current research work. The sample problem presented in this paper was encoded
using a Java-based DeLP interpreter and solved successfully under the method-
ology we have described. However, our experiments regarding this approach only
account as a “proof of concept” prototype, as we have not been able yet to carry
out thorough evaluations in the context of real-world applications. Research in this
direction is currently being pursued.
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7. S. Gómez and C. Chesñevar. A Hybrid Approach to Pattern Classification Using
Neural Networks and Defeasible Argumentation. In Proc. of 17th Intl. FLAIRS Con-
ference. Miami, Florida, USA, pages 393–398. American Assoc. for Art. Intel., May
2004.
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volume 3532 of Lecture Notes in Computer Science, pages 241–256. Springer, 2005.

68. Gerd Wagner. Web Rules Need Two Kinds of Negation. In N. Henze F. Bry
and J. Maluszynski, editors, Proc. of the 1st International Workshop, PPSW3 ’03.
Springer-Verlag LNCS 2901, 2003.

69. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Handbook – Theory, Implementation and
Applications. Cambridge University Press, 2003.

70. Deborah McGuiness, Richard Fikes, Lynn Andrea Stein, and James Hendler. DAML-
ONT: An Ontology Language for the Semantic Web. In Dieter Fensel, James Hendler,
Henry Lieberman, and Wolfgang Wahlster, editors, Spinning the Semantic Web, pages
65–93. The MIT Press, 2003.

71. S. Decker, D. Fensel, F. van Harmelen, I. Horrocks, S. Melnik, M. Klein, and J. Broek-
stra. Knowledge representation on the web. Proc. of the 2000 Description Logic Work-
shop (DL 2000), pages 89–97, 2000.

72. Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness,
and Lynn Andrea Stein. DAML+OIL (March 2001) Reference Description, 2001.
http://www.w3.org/TR/daml+oil-reference.

73. Deborah L. McGuiness and Frank van Harmelen. OWL Web Ontology Language
Overview, 2004. http://www.w3.org/TR/owl-features/.
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