
Reasoning from Desires to Intentions: A Dialectical Framework

Nicolás D. Rotstein and Alejandro J. Garcı́a and Guillermo R. Simari
National Council of Scientific and Technical Research (CONICET)

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering

Universidad Nacional del Sur, Bahı́a Blanca, Argentina
e-mail: {ndr,ajg,grs}@cs.uns.edu.ar

Abstract

Here, we define a framework where defeasible argumentation
is used for reasoning about beliefs, desires and intentions. A
dialectical filtering process is introduced to obtain a subset of
the agent’s desires containing only those that are achievable
in the current situation. Different agents types can be defined
in the framework affecting the way in which current desires
are obtained.
The agent is provided with a set of intention rules that spec-
ifies under what conditions an intention could be achieved.
When more than one intention is present, a policy will be
used to choose among them. Thus, intention policies provide
the agent with a mechanism for deciding which intention is
selected in the current situation. Several application exam-
ples will be given.

Introduction
In this work, we introduce a framework where defeasible ar-
gumentation is used for warranting agent’s beliefs, filtering
desires, and selecting proper intentions according to a given
policy. In our framework, different types of agents can be
defined and this decision will affect the way in which de-
sires are filtered.

Autonomous agents based on mental attitudes had gath-
ered special attention in the last years, specially those that
follow architectures based on BDI. There are several ap-
proaches built upon BDI, some of them introducing new
components, like the BOID architecture (Broersen et al.
2001). Regarding the underlying logic of the sets of Be-
liefs, Desires and Intentions, some approaches are based
on theories such as Default Logic (or Normal Default
Logic) (Broersen et al. 2001; Thomason 2000), whereas
others introduce a formal framework that combines BDI
with an argumentation formalism (Amgoud 2003; Hulstijn
& van der Torre 2004; Parsons, Sierra, & Jennings 1998;
Rahwan & Amgoud 2006).

In (Rotstein & Garcı́a 2006) a proposal for using defeasi-
ble argumentation to reason about agent’s beliefs and desires
was introduced. There, a mechanism is described to filter
agent’s desires to obtain a set of current desires, i.e., those
that are achievable in the current situation, but in that work

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Partially supported by CONICET, ANPCyT, and UNSur.

agent’s intentions were not considered. Here, we extend that
approach by adding agent’s intentions, and propose a new,
more general filtering process that involves the introduction
of the notion of agent type. Thus, the definition of the fil-
tering process is more flexible, and the way in which desires
are filtered will be determined by the agent type. We intro-
duce an agent architecture (see Fig. 1) where intentions are
considered and the relationship between the different com-
ponents (B, D, and I) is made explicit. To select an intention
to achieve, intention rules and a selection policy will be de-
fined.

The idea of using defeasible argumentation in the rea-
soning process of BDI agents is not new (Bratman, Israel,
& Pollack 1991), and there exist previous approaches that
relate BDI with abstract argumentation frameworks (Am-
goud 2003; Parsons, Sierra, & Jennings 1998; Rahwan &
Amgoud 2006). The contribution of our approach is to in-
troduce a BDI architecture that uses a concrete framework
based on a working defeasible argumentation system: De-
feasible Logic Programming (DeLP). As will be shown next
(see Fig. 1), argumentation will be used for reasoning about
beliefs, for filtering desires and for selecting intentions fol-
lowing a given policy. We provide meaningful examples
from a robotic soccer domain to show how an agent can be
implemented using this framework.

An outline of the proposed framework appears in Fig. 1.
Briefly, the main input is the perception from the environ-
ment, which is part of the set of belief rules (ΠB,ΔB) that,
through an argumentation process, leads to the set B of war-
ranted beliefs. We will describe how these belief rules are
used with a set of filtering rules (ΠF ,ΔF). This new set,
along with a set D of possible desires and the specification
of a filtering function are the input to a dialectical filtering
process, whose output is the set Dc of the agent’s current de-
sires. The final stage of the agent behavior loop involves the
usage of a set of intention rules, embedded in an intention
policy that will determine the preferred rule. The current
desire in the head of this rule will be the selected intention.

As shown in Fig. 1, there are three main processes. They
use defeasible argumentation based on Defeasible Logic
Programming (DeLP). Next, we give a brief summary of
DeLP (for more details see (Garcı́a & Simari 2004)). In
DeLP, knowledge is represented using facts, strict rules, and
defeasible rules:

136

E
N
V
I
R
O
N
M
E
N
T

Perception
(φ)

Action

BELIEF
RULES
(ΠB,ΔB)

FILTERING
RULES
(ΠF,ΔF)

DESIRES
(D)

FILTERING
FUNCTION

(Agent type)

argumentationprocess dialecticalfiltering process

BELIEFS
(B)

CURRENT
DESIRES

(DC)

+

argumentation-based
selection process

SELECTED
INTENTIONS

(I)

INTENTION
RULES
(Policy)

Figure 1: DeLP-based BDI architecture

• Facts are ground literals representing atomic information
or the negation of atomic information using strong nega-
tion “∼” (e.g., hasBall(opponent)).

• Strict Rules are denoted L0← L1, . . . , Ln, where L0 is a
ground literal and {Li}i>0 is a set of ground literals (e.g.,
∼hasBall(myTeam)← hasBall(opponent)).

• Defeasible Rules are denoted L0 –≺L1, . . . , Ln, where L0

is a ground literal and {Li}i>0 is a set of ground literals.
(e.g., ∼pass(mate1) –≺marked(mate1)).

Rules are distinguished by the type of arrows, and a defeasi-
ble rule “Head –≺Body” expresses that “reasons to believe
in the antecedent Body give reasons to believe in the conse-
quent Head” representing tentative information that may be
used if nothing could be posed against it.

A Defeasible Logic Program (de.l.p.) P is a set of facts,
strict rules and defeasible rules. When required, P is de-
noted (Π,Δ) distinguishing the subset Π of facts and strict
rules, and the subset Δ of defeasible rules. Strict and defea-
sible rules are ground, however, following the usual conven-
tion (Lifschitz 1996), some examples will use “schematic
rules” with variables.

Strong negation could appear in the head of program
rules, and can be used to represent contradictory knowledge.
From a program (Π,Δ) contradictory literals could be de-
rived, however, the set Π (used to represent non-defeasible
information) must be non-contradictory, i.e., no pair of con-
tradictory literals can be derived from Π. Given a literal L, L
represents the complement with respect to strong negation.
If contradictory literals are derived from (Π,Δ), a dialec-
tical process is used for deciding which literal prevails. In
short, an argument for a literal L, denoted 〈A, L〉, is a min-
imal set of defeasible rules A⊆Δ, such that A∪Π is non-
contradictory, and there is a derivation for L from A∪Π.
A literal L is warranted from (Π,Δ) if there exists a non-
defeated argument A supporting L. To establish if 〈A, L〉
is a non-defeated argument, argument rebuttals or counter-
arguments that could be defeaters for 〈A, L〉 are considered,
i.e., counter-arguments that by some criterion are preferred
to 〈A, L〉. A defeater A1 for an argument A2 can be proper
(A1 stronger than A2) or blocking (same strength). In the
examples that follow we assume generalized specificity as
the comparison criterion, however, as explained in (Garcı́a
& Simari 2004) the criterion could be easily changed.

Since defeaters are arguments, there may exist defeaters
for them, and defeaters for these defeaters, and so on. Thus,
a sequence of arguments called argumentation line is con-
structed, where each argument defeats its predecessor in the

line (for a detailed explanation of this dialectical process see
(Garcı́a & Simari 2004)). In DeLP, a query Q could have
four possible answers: YES, if Q is warranted; NO, if the
complement of Q is warranted; UNDECIDED, if neither Q
nor its complement is warranted; and UNKNOWN, if Q is
not in the signature of the program.

Warranting beliefs
Following (Rotstein & Garcı́a 2006), agent’s beliefs cor-
respond to the semantics1 of a defeasible logic program
PB = (ΠB,ΔB). In ΠB two disjoint subsets will be distin-
guished: Φ of perceived beliefs that will be updated dynam-
ically (see Fig. 1), and Σ of strict rules and facts that will
represent static knowledge, ΠB= Φ ∪ Σ. Besides the per-
ceived beliefs, the agent may use strict and defeasible rules
from PB to obtain a warrant for its derived beliefs (see De-
finition 1).

Since ΠB has to be non-contradictory, we assume that per-
ception is correct in the sense that it will not give a pair of
contradictory literals. We will also require that no perceived
literal in Φ can be derived directly from Σ. Thus, if Σ is non-
contradictory and these two restrictions are satisfied, then
ΠB will also be non-contradictory. The next definition intro-
duces the different types of belief that an agent will obtain
from a defeasible logic program (ΠB,ΔB).
Definition 1 (Belief types) A Perceived belief is a fact in Φ
that the agent has perceived directly from its environment. A
Strict belief is a literal that is not a perceived belief, and it
is derived from ΠB = Φ ∪ Σ (i.e., no defeasible rules are
used for its derivation). A Defeasible belief is a warranted
literal L supported by an non-empty argument A (i.e., it uses
at least one defeasible rule). Finally, a Derived belief is a
strict or a defeasible belief. We will denote with Bs the set
of strict beliefs, and with Bd the set of defeasible beliefs.
Therefore, in any given situation, the beliefs of an agent will
be B = Φ ∪ Bs ∪ Bd.
Example 1 Consider a robotic-soccer agent Ag that has
the following program (ΠB,ΔB), where ΠB was divided
distinguishing the set Φ={hasBall(t1), marked(t1)} of
perceived facts representing “player t1 has the ball”, and
“teammate t1 is marked”, the set Σ of non-perceived infor-
mation, and the set ΔB of defeasible knowledge:

Σ =

{
mate(t1), opponent(o1),
(∼mate(X)← opponent(X)),
(∼receive(self)← hasBall(self))

}

ΔB =

{
(receive(self) –≺hasBall(X), mate(X)),
(∼receive(self) –≺marked(self)),
(∼receive(self) –≺hasBall(X),∼mate(X))

}

Observe that Ag can infer the strict belief: ∼mate(o1).
The argument built from (ΠB,ΔB) for receive(self):

{receive(self) –≺hasBall(t1),mate(t1)}, has no de-
featers, and therefore, there is a warrant for one defeasible
belief: receive(self) (Ag may receive a pass).

The sets Φ, Bs and Bd are disjoint sets. It can be shown
that the set B of beliefs of an agent is a non-contradictory set
of warranted literals. Although perceived beliefs are facts in
ΠB, there could be other facts in ΠB which are not perceived,

1Since the semantics of DeLP is skeptical, there is only one.

137

for instance, facts that represent agent’s features, roles, etc.
These facts that do not represent perceived information are
persistent in the sense that they cannot change with percep-
tion, like myRole(defender), or mate(t1).

We assume a perception function that provides the agent
with information about its environment. This function will
be invoked by the agent to update its perceived beliefs set
Φ. When this happens the new information overrides the
old one following some criterion. Updating a set of lit-
erals is a well-known problem and many proposals exist
in the literature (Falappa, Kern-Isberner, & Simari 2002;
Fuhrmann 1997).
Example 2 In the context of Ex. 1, with the percep-
tion that the agent is now marked, the set Φ becomes
{hasBall(t1), marked(t1), marked(self)}. Now the ar-
gument for receive(self) has a “blocking defeater”, which
means that the DeLP answer for both receive(self) and
∼receive(self) will be UNDECIDED.

Consider another situation, where Φ= {hasBall(o1)}.
Here, the answer for receive(self) is NO, since there is a
warrant for ∼receive(self) supported by the non-defeated
argument {∼receive(self) –≺hasBall(o1),∼mate(o1)}.

Filtering Desires
Agents desires will be represented by a given set D of literals
that will contain a literal representing each desire the agent
might want to achieve. Clearly, D may be contradictory, that
is, both a literal L and its complement L might belong to D.
We will assume that beliefs and desires are represented with
separate names, i.e., D ∩ B = ∅. Hence, a desire cannot be
perceived or derived as a belief.

Set D represents all the desires that the agent may want to
achieve. However, depending on the situation in which it is
involved, there could be some desires impossible to be car-
ried out. For example, if the agent does not have the ball and
the ball is in a place p, then, the desire shoot could not be
effected, whereas goto(p) is a plausible option. Therefore,
agents should reason about their desires to select the ones
that could be actually realized. Following the spirit of the
BDI model, once appropriate desires are detected, the agent
may select (and commit to) a specific intention (goal), and
then select appropriate actions to fulfill that intention (see
Figure 1).

In (Rotstein & Garcı́a 2006) a reasoning formalism was
introduced for selecting from D those desires that are suit-
able to be brought about. To perform this selection, the
agent uses its beliefs (representing the current situation) and
a defeasible logic program (ΠF ,ΔF) composed by filtering
rules. The filtering rules represent reasons for and against
adopting desires. In other words, filtering rules eliminate
those desires that cannot be effected in the situation at hand.
Once the set of achievable desires is obtained, the agent can
adopt one of them as an intention.
Definition 2 (Filtering rule) Let D be the set of desires of
an agent, a filtering rule is a strict or defeasible rule that has
a literal L ∈ D in its head and a non-empty body.

Observe that a filtering rule can be either strict or defea-
sible and, as will be explained below, that will influence the
filtering process. Note also that a filtering rule cannot be

a single literal (i.e., a fact). Below we will explain how to
use filtering rules in order to select desires, but first we will
introduce an example to provide some motivation.
Example 3 A robotic-soccer agent could have the following
sets of desires and filtering rules:

D =

⎧⎪⎨
⎪⎩

shoot
carry
pass
move

⎫⎪⎬
⎪⎭ ΠF =

{ ∼carry← ∼ball
∼shoot← ∼ball
∼pass← ∼ball

}

ΔF =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

shoot –≺theirGoalieAway
carry –≺noOneAhead
pass –≺freeTeammate
∼shoot –≺farFromGoal
∼carry –≺shoot
move –≺∼ball

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Consider a particular situation in which an agent does not
have the ball (i.e., ∼ball ∈ Φ). If the agent has ΔB = ∅,
ΠB = Φ and the filtering rules (ΠF ,ΔF) from Ex. 3, then,
there are warrants for ∼carry, ∼pass and ∼shoot from this
information. Hence, in this particular situation, the agent
should not consider selecting the desires carry, pass, and
shoot, because there are justified reasons against them. Ob-
serve that these reasons are not defeasible.

Suppose now a new set of perceived beliefs: B = Φ =
{ball, theirGoalieAway, farFromGoal}, that is, another
situation in which the agent has the ball and the opponent
goalie is away from its position, but the agent is far from
the goal. Then, from the agent’s beliefs and the filtering
rules (ΠF ,ΔF) of Ex. 3, there are arguments for both shoot
and ∼shoot. Since these two arguments defeat each other, a
blocking situation occurs and the answer for both literals is
UNDECIDED. In our approach (as will be explained later) an
undecided desire could be eligible.

In this formalism, beliefs and filtering rules should be
used in combination. Hence, we need to explain how two de-
feasible logic programs can be properly combined. Agents
will have a de.l.p. (ΠB,ΔB) containing rules and facts for
deriving beliefs, and a de.l.p. (ΠF ,ΔF) with filtering rules
for selecting desires. We need to combine these two de.l.p.,
but the union of them might not be a de.l.p., because the
union of the sets of strict rules could be contradictory.
To overcome this issue, we use a merge revision opera-
tor “◦” (Fuhrmann 1997). Hence, in our case, the join of
(ΠB,ΔB) and (ΠF ,ΔF) will be a program (Π,Δ), where Π
= ΠB◦ΠF and Δ = ΔB ∪ ΔF ∪ ΔX . A set X is introduced,
containing those strict rules ri that derive complementary
literals. This set is eliminated when merging ΠB and ΠF ,
then every ri is transformed into a defeasible rule, and the
set ΔX is generated, carrying the resulting defeasible rules
(see (Rotstein & Garcı́a 2006) for more details).
Definition 3 (Agent’s Knowledge Base) Let (ΠB,ΔB) be
the set containing rules and facts for deriving be-
liefs; (ΠF ,ΔF), the set of filtering rules; and ΔX =
{(α –≺γ) | (α← γ) ∈ (ΠB ∪ ΠF) and (ΠB ∪ ΠF) �
{α, α}}. Then KAg = (ΠB◦ΠF , ΔB∪ΔF∪ΔX) will be the
agent’s knowledge base.

The next definition introduces a mechanism for filtering D
obtaining only those desires that are achievable in the cur-
rent situation. We allow the representation of different agent
types, each of which will specify a different filtering process.

138

Definition 4 (Current desires) Let T be a selection crite-
rion. The set Dc of Current Desires is defined as: Dc =
filter(T,D), where the function filter(·, ·) returns the
maximal subset of D containing those desires that satisfy the
selection criterion T .

Observe that the filtering function can be defined in a
modular way. Methodologically, it would be important to
make this function related to the KAg , in order to obtain a
rational filtering. Implementing a sensible filtering function
is not a trivial task, as it is domain-dependent, and a general
criterion cannot be stated. Different agent types, personali-
ties or behaviors can be obtained depending on the chosen
filtering criterion. The following are interesting alternatives:
CAUTIOUS AGENT: filter(T,D) = {δ ∈ D | T (δ,KAg) =
“there is a warrant for δ from KAg”}
BOLD AGENT: filter(T,D) = {δ ∈ D | T (δ,KAg) =
“there is no warrant for δ from KAg”}

Notice that when neither Q nor Q has a warrant built from
KAg , then both literals will be included into the set Dc of
a bold agent. Therefore, the agent will consider these two
options (among others), albeit in contradiction.

The way a bold agent selects its current desires (see Ex. 4)
becomes clearer considering the relation of warrant states
with DeLP answers. In DeLP, given a literal Q, there are
four possible answers for the query Q: YES, NO, UNDE-
CIDED, and UNKNOWN. Thus, agent types using DeLP can
be defined as follows:
CAUTIOUS AGENT: filter(T,D) = {δ ∈ D | T (δ,KAg) =
“the answer for δ from KAg is YES”}
BOLD AGENT: filter(T,D) = {δ ∈ D | T (δ,KAg) =
“the answer for δ from KAg is YES, UNDECIDED or UN-
KNOWN”}
Example 4 Extending Ex. 3, if we consider a bold agent as
defined above and the set of beliefs:

B = Φ = { farFromGoal, noOneAhead, ball }
the agent will generate the following set of current desires:

Dc = {carry, pass}
In this case, we have KAg = (Φ ◦ ΠF , ∅ ∪ ΔF ∪ ∅). Re-

garding Dc, DeLP’s answer for shoot is NO, for carry is
YES, and for pass is UNDECIDED. Finally, note that a cau-
tious agent would choose carry as the only current desire.

As stated above, it is required that B and D be two sep-
arate sets to avoid the confusion when joining the (ΠB,ΔB)
and (ΠF ,ΔF) programs. This is not a strong restriction, be-
cause a literal being both a belief and a desire brings about
well-known representational issues.

Selecting Intentions
In our approach, an intention will be a current desire d ∈ Dc

that the agent can commit. To specify under what conditions
the intention could be achieved, the agent will be provided
with a set of intention rules. Next, these concepts and the
formal notion of applicable intention rule are introduced.
Definition 5 (Intention Rule) An intention rule is a de-
vice used to specify under what conditions an in-
tention could be effected. It will be denoted as
(d ⇐ {p1, . . . , pn}, {not c1, . . . , not cm}), where d is a lit-
eral representing a desire that could be selected as an inten-

tion, p1, . . . , pn (n ≥ 0) are literals representing precon-
ditions, and c1, . . . , cm (m ≥ 0) are literals representing
constraints.

Example 5 A robotic-soccer agent might have the following
set of intention rules:
IR1 : (carry ⇐ {ball}, {})
IR2 : (pass ⇐ {ball}, {not shoot})
IR3 : (shoot ⇐ {ball}, {not marked})
IR4 : (carry ⇐ {winning}, {})
IR5 : (move ⇐ {}, {})

Now we describe how an intention becomes applicable.
Definition 6 (Applicable Intention Rule)
Let KAg= (ΠB◦ΠF , ΔB∪ΔF∪ΔX) be the knowledge base
of an agent, and Dc, its set of current desires. Let B be
the set of beliefs obtained from (ΠB,ΔB). An intention rule
(d ⇐ {p1, . . . , pn}, {not c1, . . . , not cm}) is applicable iff

1. d ∈ Dc,
2. for each precondition pi (0 ≤ i ≤ n) it holds pi ∈ (B ∪ Dc)
3. for each constraint ci (0 ≤ i ≤ m) it holds cj
∈ (B ∪ Dc).
Thus, in every applicable intention rule it holds:
1. the head d is a current desire of the agent selected by the filtering

function,
2. every precondition pi that is a belief is warranted from KAg ,
3. every precondition pi that is a desire belongs to set Dc,
4. every belief constraint ci has no warrant from KAg , and
5. every ci that is a desire does not belong to Dc.

Example 6 Consider a bold agent, and K, B and Dc as
given in Example 4. Now it is possible to determine which
of the intention rules of Example 5 are applicable. Rule IR1

is applicable because carry ∈ Dc. Rule IR2 is applicable
because pass ∈ Dc, ball ∈ B, and shoot �∈ Dc. Rule IR3

is not applicable because shoot �∈ Dc. Rule IR4 is not
applicable because the precondition is not a literal from K.
Finally, IR5 is not applicable because move �∈ Dc. Thus,
{IR1, IR2} is the set of applicable rules.

Intention rules’ goal is to select the final set of intentions.
In general, this selection among current desires cannot be
done by using filtering rules. For instance, if we have to
select just one intention, and there are two warranted current
desires, how can we choose one? There is a need for an
external mechanism to make that decision.

Intention rules and filtering rules (Definition 2) have dif-
ferent semantics and usage:
• Filtering rules are used to build arguments for and against

desires (thus, they are the basis of the dialectical process
for warranting a desire), whereas intention rules are used
on top of the dialectical process.

• Intention rules do not interact, whereas filtering rules do
interact because they can be in conflict or can be used for
deriving a literal in the body of another filtering rule.

• Applicable intention rules depend on the result of the fil-
tering process over desires and warranted beliefs, whereas
a filtering rule is “applicable” when its body literals are
supported by perceived beliefs, or by other defeasible or
strict rules.
The set of all applicable intention rules contains rules

whose heads represent applicable intentions achievable in
the current situation. Depending on the application domain,
there are many possible policies to select from the set of

139

applicable intentions. For example, the agent could try to
pursue some of them simultaneously, or it might be forced
to commit to one. Furthermore, each of these two options
has, in turn, several solutions. The idea behind having inten-
tion rules and policies is to give a more flexible mechanism
than plain priorities. Next, we define how to obtain a set of
selected intentions.
Definition 7 (Set of Selected Intentions) Let IR be the set
of intention rules, and App ⊆ IR be the set of all the ap-
plicable intention rules. Let p : IR → D be a given se-
lection policy. Then, the set of selected intentions I will be
p(App).

The policy p(App) could be defined in many ways. For
instance, p(App) could be “return all the heads of rules in
App”. However, depending on the application domain, more
restrictive definitions for p(App) could be necessary. For
example, in our robotic soccer domain, agents must select
a single applicable intention at a time (i.e., an agent cannot
shoot and pass the ball at the same time). One possibility
for defining a policy that returns a single intention is to pro-
vide a sequence with all the intention rules [IR1,...,IRn] that
represents a preference order among them. Then, the policy
p(App) selects the first rule IRk (1 ≤ k ≤ n) in the se-
quence that belongs to App, returning the head of IRk.
Example 7 Continuing with Ex. 6. The set of applicable
intention rules is App = {IR1, IR2, IR5}, and suppose
that the policy p is the one introduced above. Then, if the
preference order is [IR1, IR2, IR3, IR4, IR5], the selected
intention will be the head of IR1, i.e., p(App) = {carry}.

Now we can formally define the structure of an agent.
Definition 8 (DeLP-Based BDI Agent)
An agent A is a tuple 〈D, (ΠB,ΔB), (ΠF ,ΔF), T, IR, p〉,
where: D is the set of desires of the agent, (ΠB,ΔB) is
the agent knowledge (that will include perceived beliefs),
(ΠF ,ΔF) are filtering rules, T is an agent type, IR is a set of
intention rules, and p(·) is a policy for selecting intentions.

We will show, using different examples, how the proposed
agent selects appropriate intentions when faced with differ-
ent scenarios. In each example, the difference of defining a
bold or a cautious agent will be made clear.
Example 8 Let A=〈D, (ΠB,ΔB), (ΠF ,ΔF), T, IR, p〉 be
an agent with the set D and (ΠF ,ΔF) from Ex. 3, the
set IR of Ex. 5, the policy p defined in Ex. 7, and the
set ΔB = ∅. Consider the situation in Fig. 2(a) where
“o1” and “o2” represent the positions of two opponents
and “self” is the position of the agent A who has the
ball (small circle). Thus, the perception of the agent is
Φ1 = {ball, noOneAhead, theirGoalieAway} . In this
situation, agent A can build the following arguments:

A1 : {shoot –≺theirGoalieAway},
A2 : {carry –≺noOneAhead},
A3 : {(∼carry –≺shoot), (shoot –≺theirGoalieAway)}.

Hence, shoot is warranted, whereas carry, ∼carry, pass
and ∼pass are not. As stated above the filter function will
determine the type of agent (e.g., bold or cautious), which
could affect the set of selected intentions. For example:
• for a cautious agent, Dc

C1 = {shoot}, intention rule IR3

is applicable, and IC1 = {shoot};

• for a bold agent, Dc
B1 = {shoot, carry, pass}, intention

rules IR1 and IR3 are applicable, and IB1 = {carry}.

Note that the cautious agent obtains only one current de-
sire that is its selected intention. On the other hand, since
the bold agent includes “undecided” literals in its current
desires, Dc

B1 has more elements than Dc
C1, there are two ap-

plicable intention rules, and the policy “p” has to be used.

o2

o1

self
o2

o1

self

(a) (b)
Figure 2: Two scenarios for a robotic soccer agent

Example 9 Consider the agent A in Ex. 8 but in a different
scenario (depicted in Fig. 2(b)). Here the perception of the
agent is Φ2 = {ball, noOneAhead, farFromGoal}.
In this situation, agent A can build the following arguments:

A1 : {∼shoot –≺farFromGoal},
A2 : {carry –≺noOneAhead}.

Hence, ∼shoot and carry are warranted, whereas pass and
∼pass are not, and:

• for a cautious agent, Dc
C2 = {carry}, intention rule IR1

is applicable, and IC2 = {carry};
• for a bold agent, Dc

B2 = {carry, pass}, intention rules
IR1 and IR2 are applicable, and IB2 = {carry}.

Example 10 Consider the situation depicted in Fig. 3(a)
for the agent A in Ex. 8, where “t1” represents the posi-
tion of a teammate of A. The perception of A is Φ3 =
{ball, freeTeammate, farFromGoal}. In this situation,
A can build the following arguments:

A1 : {∼shoot –≺farFromGoal},
A2 : {pass –≺freeTeammate},

Hence, we have that pass and ∼shoot are warranted,
whereas carry and ∼carry are not, and:

• for a cautious agent, Dc
C3 = {pass}, intention rule IR2

is applicable, and IC3 = {pass};
• for a bold agent, Dc

B3 = {carry, pass}, intention rules
IR1 and IR2 are applicable, and IB3 = {carry};

Now, in the situation of (Fig. 3(b)) for the agent A
of Ex. 8. The perception of the agent is Φ4 =
{ball, freeTeammate, theirGoalieAway}. We can build
the following arguments:

A1 : {shoot –≺theirGoalieAway},
A2 : {pass –≺freeTeammate},
A3 : {(∼carry –≺shoot), (shoot –≺theirGoalieAway)}.

Hence, pass, shoot and ∼carry are warranted, and:

• for a cautious agent, Dc
C4 = {shoot}, intention rule IR3

is applicable, and IC4 = {shoot};
• for a bold agent, Dc

B4 = {shoot}, intention rules IR3 is
applicable, and IB4 = {shoot}.

140

o2

o1

self
t1

o2

o1

self

t1

(a) (b)
Figure 3: Two scenarios for a robotic soccer agent

Related Work
The use of defeasible argumentation in BDI architectures is
not new and it was originally suggested in (Bratman, Israel,
& Pollack 1991), and more recently in (Parsons, Sierra, &
Jennings 1998). Also in (Thomason 2000) and (Broersen et
al. 2001) a formalism for reasoning about beliefs and desires
is given, but they do not use argumentation.

Recently, Rahwan and Amgoud (2006) have proposed an
argumentation-based approach for practical reasoning that
extends (Amgoud 2003) and (Amgoud & Cayrol 2002), in-
troducing three different instantiations of Dung’s framework
to reason about beliefs, desires and plans, respectively. This
work is, in our view, the one most related to ours. Both ap-
proaches use defeasible argumentation for reasoning about
beliefs and desires (in their work, they also reason about
plans, but this is out of the scope of our presentation). Like
us, they separate in the language those rules for reasoning
about belief from those rules for reasoning about desires;
and, in both approaches, it is possible to represent contradic-
tory information about beliefs and desires. Both approaches
construct arguments supporting competing desires, and they
are compared and evaluated to decide which one prevails.
Their notion of desire rule is similar to our filtering rules.

In their approach, two different argumentation frame-
works are needed to reason about desires: one framework for
beliefs rules and another framework for desires rules. The
last one depends directly on the first one, and since there are
two kinds of arguments, a policy for comparing mixed argu-
ments is given. In our case, only one argumentation formal-
ism is used for reasoning with both types of rules. In their
object language, beliefs and desires include a certainty fac-
tor for every formula, and no explicit mention of perceived
information is given. In our case, uncertainty is represented
by defeasible rules (Garcı́a & Simari 2004) and perceived
beliefs are explicitly treated by the model. Besides, the ar-
gumentation formalism used in their approach differs from
ours: their comparison of arguments relies on the certainty
factor given to each formula, and they do not distinguish be-
tween proper and blocking defeaters. Another fundamental
difference is that we permit the definition of different types
of agents. This feature adds great flexibility in the construc-
tion of an agent.

Conclusions
We have shown how a deliberative agent can represent its
perception and beliefs using a defeasible logic program. The
information perceived directly from the environment is rep-
resented with a subset of perceived beliefs that is dynami-

cally updated, and a set formed with strict rules and facts
represent other static knowledge of the agent. In addition to
this, defeasible argumentation is used to warrant agents (de-
rived) beliefs. Strict and defeasible filtering rules have been
introduced to represent knowledge regarding desires. De-
feasible argumentation is used for selecting a proper desire
that fits in the particular situation the agent is involved. With
this formalism, agents can reason about its desires and select
the appropriate ones. We allow the representation of differ-
ent agent types, each of which will specify a different way
to perform the filtering process. In our approach, an inten-
tion is a current desire that the agent can commit to pursue.
The agent is provided with a set of intention rules that spec-
ify under what conditions an intention could be achieved. If
there is more than one applicable intention rule, then a policy
is used to define a preference criterion among them. Thus,
intention policies give the agent a mechanism for deciding
which intentions should be selected in the current situation.

References
Amgoud, L., and Cayrol, C. 2002. A reasoning model
based on the production of acceptable arguments. Annals of
Mathematics and Artificial Intelligence 34(1-3):197–215.
Amgoud, L. 2003. A formal framework for handling con-
flicting desires. In Proc. of the 7th ECSQARU, 552–563.
Bratman, M. E.; Israel, D.; and Pollack, M. 1991. Plans
and resource-bounded practical reasoning. In Cummins,
R., and Pollock, J. L., eds., Philosophy and AI: Essays at
the Interface. Cambridge, MA: The MIT Press. 1–22.
Broersen, J.; Dastani, M.; Hulstijn, J.; Huang, Z.; and
van der Torre, L. 2001. The boid architecture: conficts be-
tween beliefs, obligations, intentions and desires. In Proc.
of 5th Int. Conf. on Autonomous Agents. Canada: ACM
Press. 9–16.
Falappa, M.; Kern-Isberner, G.; and Simari, G. 2002. Be-
lief revision, explanations and defeasible reasoning. Artifi-
cial Intelligence Journal 141:1–28.
Fuhrmann, A. 1997. An Essay on Contraction. Studies
in Logic, Language and Information, CSLI Publications,
Stanford, CA.
Garcı́a, A., and Simari, G. 2004. Defeasible logic pro-
gramming: An argumentative approach. Theory Practice
of Logic Programming 4(1):95–138.
Hulstijn, J., and van der Torre, L. 2004. Combining goal
generation and Planning in and argumentation framework.
In Proc. of the 10th NMR.
Lifschitz, V. 1996. Foundations of logic programming. In
Brewka, G., ed., Principles of Knowledge Representation.
CSLI. 69–127.
Parsons, S.; Sierra, C.; and Jennings, N. 1998. Agents
that reason and negotiate by arguing. Journal of Logic and
Computation 8(3):261–292.
Rahwan, I., and Amgoud, L. 2006. An argumentation-
based approach for practical reasoning. In Proc. of the 5th
AAMAS.
Rotstein, N., and Garcı́a, A. 2006. Defeasible reasoning
about beliefs and desires. In Proc. of the 11th NMR, 429–
436.
Thomason, R. 2000. Desires and defaults: A framework
for planning with inferred goals. In Proc. of the seventh
KR, 702–713.

141

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

