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Abstract

The Semantic Web is a future vision of the web where stored information has exact meaning, thus enabling
computers to understand and reason on the basis of such information. Assigning semantics to web resources
is addressed by means of ontology definitions which are meant to be written in an ontology description
language such as OWL-DL that is based on so-called Description Logics (DL). Although ontology definitions
expressed in DL can be processed with existing DL reasoners, such DL reasoners are incapable of dealing
with inconsistent ontology definitions.

Previous research has determined that a subset of DL can be effectively translated into an equivalent subset of
logic programming. We propose a method for dealing with inconsistent ontology definitions in the Semantic
Web. Our proposal involves mapping DL ontologies into DeLP programs. That is, given an OWL-DL
ontology OOwl, an equivalent DL ontology ODL can be obtained. Provided ODL satisfies certain restrictions,
it can be translated into a DeLP program ODeLP . Therefore, given a query Q w.r.t. OOwl, a dialectical
process will be performed to determine if Q is warranted w.r.t. ODeLP .

Keywords: Semantic web, defeasible argumentation, Description Logics, Defeasible Logic Programming,
inconsistent ontology handling.

1 Introduction

The Semantic Web [3] is a future vision of the
web where stored information has exact meaning,
thus enabling computers to understand and rea-
son on the basis of such information. Assigning
semantics to web resources is addressed by means

of ontology definitions. The term ontology stands
for a specification of a conceptualization, that is
to say a description of the concepts and relation-
ships that can exist for an agent or a community
of agents.

As proposed by the World Wide Web Consortium
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(W3C)1, ontology definitions are meant to be
written in an ontology description language such
as OWL [16], whose subset known as OWL-DL is
based on so-called Description Logics (DL) [1].
Although ontology definitions expressed in DL
can be processed with existing DL reasoners (e.g.
Racer [14]), such DL reasoners are incapable of
dealing with inconsistent ontology definitions. In
particular, when a DL reasoner is presented with
an inconsistent ontology definition, it will be un-
able to extract any useful consequences from it.

However, previous research [13] has determined
that a subset of DL can be effectively translated
into an equivalent subset of Horn logic. In partic-
ular, DeLP is an argumentative framework based
on logic programming that is capable of dealing
with possibly inconsistent knowledge bases codi-
fied as a set of Horn-like clauses [8]. When pre-
sented with a query Q w.r.t. a KB P, DeLP per-
forms a dialectical process in which all arguments
in favor and against Q are considered. In such a
process, arguments regarded as ultimately unde-
feated will be considered warranted.

In this article, we propose a method for dealing
with inconsistent ontology definitions in the Se-
mantic Web. Our proposal involves mapping DL
ontologies into a DeLP program. That is, given
an OWL-DL ontology OOwl, an equivalent DL
ontology ODL can be obtained. Provided ODL

satisfies certain restrictions, it can be translated
into a DeLP program ODeLP . Then given a query
Q, a dialectical process will be performed to de-
termine if Q is warranted w.r.t. ODeLP .

Outline: Section 2 introduces the fundamen-
tals of Description Logics. Section 3 briefly ex-
plains the Defeasible Logic Programming formal-
ism. Section 4 introduces how the mapping from
DL to DeLP is performed. Section 5 explains
how inconsistent ontology definitions are handled
within DeLP. Section 6 briefly analyzes features
of and extensions to the presented approach. Sec-
tion 7 discusses related work. Finally Section 8
concludes.

2 Description Logics

Description Logics (DL) are a well-known family
of knowledge representation formalisms [1]. They

are based on the notions of concepts (unary pred-
icates, classes) and roles (binary relations), and
are mainly characterized by constructors that al-
low complex concepts and roles to be built from
atomic ones. The expressive power of a DL sys-
tem is determined by the constructs available for
building concept descriptions, and by the way
these descriptions can be used in the terminologi-
cal (Tbox ) and assertional (Abox ) components of
the system.

We now describe the basic language for building
DL expressions. Let C and D stand for concepts
and R for a role name. Concept descriptions are
built from concept names using the constructors
conjunction (CuD), disjunction (CtD), negation
(¬C), existencial restriction (∃R.C), and value
restriction (∀R.C). To define the semantics of
concept descriptions, concepts are interpreted as
subsets of a domain of interest, and roles as bi-
nary relations over this domain. An interpreta-
tion I consists of a non-empty set ∆I (the do-
main of I) and a function ·I (the interpretation
function of I) which maps every concept name
A to a subset AI of ∆I , and every role name
to R to a subset RI of ∆I × ∆I . The inter-
pretation function is extended to arbitrary con-
cept descriptions as follows: (¬C)I = ∆I\CI ;
(C t D)I = CI ∪ DI ; (C u D)I = CI ∩ DI ;
(∃R.C)I = {x|∃y s.t. (x, y) ∈ RI and y ∈ CI},
and (∀R.C)I = {x|∀y, (x, y) ∈ RI implies y ∈
CI}. Besides, the expressions > and ⊥ are short-
hands for C t ¬C and C u ¬C, resp. Further
extensions to the basic DL are possible including
inverse and transitive roles noted as P− and P+,
resp.

A DL knowledge base (KB) KB = (T,A) con-
sists of two finite and mutually disjoint sets: the
Tbox T which introduces the terminology and the
Abox A which contains facts about particular ob-
jects in the application domain. Tbox statements
have the form C v D (inclusions) and C ≡ D
(equalities), where C and D are (possibly com-
plex) concept descriptions.

The semantics of Tbox statements is as follows.
An interpretation I satisfies C v D iff CI ⊆ DI ,
I satisfies C ≡ D iff CI = DI . Objects in the
Abox are referred to by a finite number of indi-
vidual names and these names may be used in
two types of assertional statements: concept as-
sertions of the type C(a) and role assertions of

1www.w3c.org
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the type R(a, b), where C is a concept descrip-
tion, R is a role name, and a and b are individual
names. An interpretation I satisfies the asser-
tion C(a) iff aI ∈ CI , and it satisfies R(a, b) iff
(aI , bI) ∈ RI . An interpretation I is a model of
a DL (Tbox or Abox) statement φ iff it satisfies
the statement, and is a model of a DL knowledge
base KB iff it satisfies every statement in KB. A
DL knowledge base KB entails a DL statement
φ, written as KB |= φ, iff every model of KB is a
model of φ.

Example 1 Consider the ontology KB = (T,A)
in Figure 1 about flying animals. Sentence (1) in
the Tbox T says that every bird is an animal, sen-
tence (2) says that every bird flies. Sentences (3)
and (4) say that eagles and penguins are birds.
Sentences (5), (6) and (7) say that penguins do
not fly unless they are genetically-altered, where a
genetically-altered penguin is a penguin that has
been operated by a genetic surgeon. Sentence (8)
establishes that eagles with a broken wing are no
longer able to fly. Sentence (9) defines relation
isOperatedBy as the inverse of relation operates.
Finally, sentence (10) defines a genetic surgeon
as a geneticist who is also a surgeon.

Sentence (11) in the Abox A expresses that Opus
is a penguin. Sentences (12) and (13) establish
that Avenger is an eagle who has a broken wing.
Sentences (14) and (15) say that Frankenstein is
both a geneticist and a surgeon, resp. Finally,
sentence (16) establishes that Frankenstein has
operated Opus.

Tbox T :
(1) bird v animal;
(2) bird v fly;
(3) eagle v bird;
(4) penguin v bird;
(5) penguin v ¬fly;
(6) penguin u ∃isOperatedBy .geneticSurgeon v

geneticallyAlteredPenguin;
(7) geneticallyAlteredPenguin v fly;
(8) eagle u hasBrokenWing v ¬fly;
(9) isOperatedBy ≡ operates−;
(10) geneticSurgeon ≡ geneticist u surgeon

Abox A:
(11) penguin(opus);
(12) eagle(avenger);
(13) hasBrokenWing(avenger);
(14) geneticist(frankenstein);
(15) surgeon(frankenstein);
(16) operates(frankenstein, opus)

Figure 1. Description Logics knowledge base

KB = (T, A) about flying animals

3 Defeasible Logic Program-
ming

Defeasible Logic Programming (DeLP) [8] pro-
vides a language for knowledge representation
and reasoning that uses defeasible argumenta-
tion [6, 17, 18] to decide between contradictory
conclusions through a dialectical analysis. Cod-
ifying knowledge by means of a DeLP program
provides a good trade-off between expressivity
and implementability. Recent research has shown
that DeLP provides a suitable framework for
building real-world applications (e.g., clustering
algorithms [9] and intelligent web forms [10, 12])
that deal with incomplete and potentially contra-
dictory information.

In a defeasible logic program P = (Π,∆), a
set ∆ of defeasible rules P −≺ Q1, . . . , Qn, and
a set Π of strict rules P ← Q1, . . . , Qn can be
distinguished. Deriving literals in DeLP results
in the construction of arguments. An argument
A is a (possibly empty) set of ground defeasi-
ble rules that together with the set Π provide a
logical proof for a given literal Q, satisfying the
additional requirements of non-contradiction and
minimality. Formally:

Definition 1 (Argument) Given a DeLP pro-
gram P, an argument A for a query Q, denoted
〈A, Q〉, is a subset of ground instances of defea-
sible rules in P, such that: (1) there exists a de-
feasible derivation for Q from Π ∪ A; (2) Π ∪ A
is non-contradictory ( i.e., Π ∪ A does not entail
two complementary literals P and ∼P ), and, (3)
there is no A′ ⊆ A such that there exists a defea-
sible derivation for Q from Π∪A′. An argument
〈A1, Q1〉 is a sub-argument of another argument
〈A2, Q2〉 if A1 ⊆ A2. Given a DeLP program P,
Args(P) denotes the set of all possible arguments
that can be derived from P.

The notion of defeasible derivation corresponds
to the usual query-driven SLD derivation used
in logic programming, performed by backward
chaining on both strict and defeasible rules; in
this context a negated literal ∼P is treated just
as a new predicate name no P . Minimality im-
poses a kind of ‘Occam’s razor principle’ [18] on
argument construction. The non-contradiction
requirement forbids the use of (ground instances
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of) defeasible rules in an argument A whenever
Π ∪ A entails two complementary literals. The
notion of contradiction is captured by the notion
of counterargument.

Definition 2 (Counterargument. Defeat)
An argument 〈A1, Q1〉 is a counterargument for
an argument 〈A2, Q2〉 iff there is an subargument
〈A, Q〉 of 〈A2, Q2〉 such that the set Π ∪ {Q1, Q}
is contradictory. An argument 〈A1, Q1〉 is a de-
feater for an argument 〈A2, Q2〉 if 〈A1, Q1〉 coun-
terargues 〈A2, Q2〉, and 〈A1, Q1〉 is preferred over
〈A2, Q2〉 w.r.t. a preference criterion � on con-
flicting arguments. Such criterion is defined as a
partial order �⊆ Args(P) × Args(P). The ar-
gument 〈A1, Q1〉 will be called a proper defeater
for 〈A2, Q2〉 iff 〈A1, Q1〉 is strictly preferred over
〈A, Q〉 wrt �; if 〈A1, Q1〉 and 〈A, Q〉 are un-
related to each other will be called a blocking
defeater for 〈A2, Q2〉.

Generalized specificity [18] is typically used as
a syntax-based criterion among conflicting argu-
ments. However, other alternative partial orders
could also be valid. In particular, in this article
we are going to use the criterion based on rule
comparison introduced in [8]:

Definition 3 (Rule comparison criterion)
Let “�” be a preference relation explicitly defined
among defeasible rules. Given two arguments
〈A1,H1〉 and 〈A2,H2〉, the argument 〈A1,H1〉
will be preferred over 〈A2,H2〉 if: (1) there exists
at least one rule ra ∈ A1 and one rule rb ∈ A2

such that ra � rb, and (2) there is no r′b ∈ A2

and r′a ∈ A1 such that r′b � r′a.

In order to determine whether a given argument
A is ultimately undefeated (or warranted), a di-
alectical process is recursively carried out, where
defeaters for A, defeaters for these defeaters, and
so on, are taken into account. An argumen-
tation line starting in an argument 〈A0, Q0〉 is
a sequence [〈A0, Q0〉, 〈A1, Q1〉, 〈A2, Q2〉, . . . ,
〈An, Qn〉 . . . ] that can be thought of as
an exchange of arguments between two par-
ties, a proponent (evenly-indexed arguments) and
an opponent (oddly-indexed arguments). Each
〈Ai, Qi〉 is a defeater for the previous argument
〈Ai−1, Qi−1〉 in the sequence, i > 0. In or-
der to avoid fallacious reasoning, dialectics im-
poses additional constraints on such an argument
exchange to be considered rationally acceptable.

Given a DeLP program P and an initial argument
〈A0, Q0〉, the set of all acceptable argumentation
lines starting in 〈A0, Q0〉 accounts for a whole di-
alectical analysis for 〈A0, Q0〉 (i.e., all possible
dialogues about 〈A0, Q0〉 between proponent and
opponent), formalized as a dialectical tree.

Nodes in a dialectical tree T〈A0,Q0〉 can be marked
as undefeated and defeated nodes (U-nodes and
D-nodes, resp.). A dialectical tree will be marked
as an and-or tree: all leaves in T〈A0,Q0〉 will be
marked U-nodes (as they have no defeaters), and
every inner node is to be marked as D-node iff it
has at least one U-node as a child, and as U-node
otherwise. An argument 〈A0, Q0〉 is ultimately
accepted as valid (or warranted) wrt a DeLP pro-
gram P iff the root of its associated dialectical
tree T〈A0,Q0〉 is labelled as U-node.

Given a DeLP program P, solving a query Q
w.r.t. P accounts for determining whether Q is
supported by (at least) one warranted argument.
Different doxastic attitudes can be distinguished
as follows: Yes, accounts for believing Q iff there
is at least one warranted argument supporting Q
on the basis of P; No, accounts for believing ∼Q
iff there is at least one warranted argument sup-
porting ∼Q on the basis of P; Undecided, neither
Q nor ∼Q are warranted w.r.t. P, and Unknown,
Q does not belong to the signature of P.

For an example of DeLP, see Examples 2 and 3
in Sections 4 and 5, resp.

4 Translating from DL to
DeLP for Reasoning with
Individuals

As explained above DL ontologies can be inconsis-
tent. Notably DL reasoners such as RACER [14]
are incapable of dealing with such situations.
When presented with such inconsistent ontolo-
gies, RACER will issue an error message and will
stop further processing.

Grosof et al. [13] have identified a subset of DL
languages that can be effectively mapped into
a Horn-clause logics. Accordingly, our work is
based on such research by adapting it to the
DeLP framework. We therefore propose trans-
lating a DL ontology KB = (T,A) into a DeLP
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program P = (Π,∆) by means of a mapping T
such that P = T (KB). Intuitively the set Π of
strict rules in P will correspond to the Abox A
in KB while the set ∆ of defeasible rules will cor-
respond to the Tbox T in KB. In the rest of
this section, we will explain how to achieve the
translation of DL KB into DeLP programs exem-
plifying the process with the DL KB described in
Example 1. Moreover, defeasible rules of the form
“H −≺ B1, . . . , Bn” will be written for clarity as
“H −≺ B1 ∧ . . . ∧Bn”.

4.1 Translating Statements

For mantaining backward compatibility with pre-
vious knowledge representation languages, part of
OWL-DL constructs are based on RDF Schema
(RDFS). RDFS provides a subset of the DL
statements (subclass, subproperty, range, and do-
main statements), which in a DL setting are
called Tbox axioms, and asserted class-instance
(type) and instance-property-instance relation-
ships (which in a DL setting are called Abox ax-
ioms). A DL inclusion axiom C v D corre-
sponds to a first-order logic (FOL) implication
(∀x)(C(x) → D(x)). Then class and property
axioms maps to DeLP as: Class C is subclass
of class D maps to “D(X) −≺ C(X)” and prop-
erty Q is a subproperty of property P (noted as
Q v P ) maps to “P (X, Y ) −≺ Q(X, Y )” where
X and Y are variable names. The range and
domain statements map as follows: the range of
property P is class C (noted as > v ∀P.C) maps
to “C(Y ) −≺ P (X, Y )” and the domain of prop-
erty P is in class C (noted as > v ∀P.C) maps
to “C(Y ) −≺ P (Y,X)”. Asserted class-instance
(type) and instance-property-instance relation-
ships, which correspond to DL axioms of the form
C(a) and P (a, b) resp. (i.e., Abox axioms), are
equivalent to DeLP facts of the form “C(a)” and
“P (a, b)”, where a and b are constants.

Class and property equivalence axioms can be
replaced with a symmetrical pair of inclusion
axioms, so they can be mapped to a sym-
metrical pair of DeLP rules as follows: the
class C is equivalent to the class D (noted
as C ≡ D) maps to the set of DeLP rules
{C(X) −≺ D(X);D(X) −≺ C(X)} and the prop-
erty P is equivalent to the property Q (noted
as P ≡ Q) maps to the set of DeLP rules
{P (X, Y ) −≺ Q(X, Y );Q(X, Y ) −≺ P (X, Y )}.
Inverse and transitivity axioms can also

be translated: the property P is the in-
verse of the property Q (noted as P ≡
Q−) maps to the set of DeLP rules
{Q(Y,X) −≺ P (X, Y );P (X, Y ) −≺ Q(Y, X)} and
the property P is transitive (noted as P+ v P )
maps to “P (X, Z) −≺ P (X, Y ) ∧ P (Y,Z)”.

4.2 Translating Class Constructors

In the previous section we showed how DL ax-
ioms correspond with DeLP rules, and how these
can be used to make statements about classes
and properties. In DL the classes appearing in
such axioms need not be atomic, but can be com-
plex compound expressions built up from atomic
classes and properties using a variety of construc-
tors. Next we will show how these DL expressions
correspond to expressions in the body of DeLP
rules. We will use C,D to denote classes, and
P,Q to denote properties.

Conjunctions: A DL class can be formed by
conjoining existing classes (noted as CuD), which
corresponds to a conjunction of unary predicates.
Conjunction can be directly expressed in the body
of a DeLP rule. When a conjunction occurs
on the left-hand side (l.h.s.) of a subclass ax-
iom (as in C1 u C2 v D) it becomes a con-
junction in the body of the corresponding rule
“D(X) −≺ C1(X)∧C2(X)”. When a conjunction
occurs on the right-hand side (r.h.s.) of a sub-
class axiom (as in C v D1 u D2), it becomes
conjunction in the head of the rule “D1(X) ∧
D2(X) −≺ C(X)”; this can be transformed (via
Lloyd-Topor transformations) into a set of DeLP
rules {(D1(X) −≺ C(X)); (D2(X) −≺ C(X))}.

Disjunctions: A DL class can be formed from a
disjunction of existing classes (noted as C t D),
which corresponds to a disjunction of unary pred-
icates. When a disjunction occurs on the l.h.s.
of a subclass axiom (as in C1 t C2 v D), it
becomes a disjunction in the body of the rule
“D(X) −≺ C1(X) ∨ C2(X)”; this is transformed
(by Lloyd-Topor) into a pair of DeLP rules
{(D(X) −≺ C1(X)); D(X) −≺ C2(X)}. Notice
that when a disjunction occurs on the r.h.s. of
a subclass axiom, it becomes a disjunction in the
head of the corresponding rule, and this cannot
be represented in DeLP.

Universal restrictions: In a DL, the univer-
sal quantifier can only be used in restrictions
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(expressions of the form ∀P.C, where P must
be a single primitive property but C can be a
compound expression). So when a universal re-
striction occurs on the r.h.s. of a subclass ax-
iom (C v ∀P.D), it is expressed as a DeLP rule
“D(Y ) −≺ C(X) ∧ P (X, Y )”. When a universal
restriction occurs on the l.h.s. of a subclass ax-
iom (as in ∀P.C v D), it is equivalent to the rule
“C(Y ) −≺ P (X, Y ) −≺ D(Y )” which is equiva-
lent to “∼ P (X, Y ) ∨ C(Y ) −≺ D(Y )”, which is
transformed into the set of rules {(D(Y ) −≺ ∼
P (X, Y )); (D(Y ) −≺ C(Y ))}.

Existential restrictions: In a DL, the exis-
tential quantifier is used in an expression of the
form ∃P.C, where P must be a single primi-
tive property, but C may be a compound expres-
sion. When an existential restriction occurs on
the l.h.s. of a subclass axiom (as in ∃P.C v D),
it is expressed as a conjunction in the body of a
DeLP rule “D(X) −≺ P (X, Y )∧C(Y )”. When an
existential restriction occurs on the r.h.s. of a sub-
class axiom, it should be expressed as a conjunc-
tion in the head of the corresponding rule, with
a variable that is existentially quantified. This
cannot be represented in DeLP.

4.3 A Recursive Mapping from DL
to DeLP

In [13], Grosof et al. present a mapping from DL
to a subset of Logic Programming. In this section,
we will present an adaptation of such mapping for
translating DL KBs into DeLP programs.

In the previous sections, we have defined all the
cases regarding the translation of DL sentences
and axioms into DeLP. Using those definitions as
guidelines and assuming that every DL sentence
is normalized w.r.t. negation, every DL axiom is
mapped into one or more DeLP rules.

Definition 4 (Mapping T from DL to DeLP)
Let A,C, D be concepts, X, Y be variables, P,Q
be relationships.

T (C v D) =df Th(D, X) −≺ Tb(C, X)
Th(A, X) =df A(X)
Th((C uD), X) =df Th(C, X) ∧ Th(D, X)
Th((∀R.C), X) =df Th(C, Y ) −≺ R(X, Y )
Tb(A, X) =df A(X)
Tb((C uD), X) =df Tb(C, X) ∧ Tb(D, X)
Tb((C tD), X) =df Tb(C, X) ∨ Tb(D, X)
Tb((∃R.C), X) =df R(X, Y ) ∧ Tb(C, Y )

T (C ≡ D) =df

�
T (C v D)
T (D v C)

T (> v ∀P.D) =df Th(D, Y ) −≺ P (X, Y )
T (> v ∀P−.D) =df Th(D, X) −≺ P (X, Y )
T (D(a)) =df Th(D, a)
T (P (a, b)) =df P (a, b)
T (P v Q) =df Q(X, Y ) −≺ P (X, Y )

T (P ≡ Q) =df

�
Q(X, Y ) −≺ P (X, Y )
P (X, Y ) −≺ Q(X, Y )

T (P ≡ Q−) =df

�
Q(X, Y ) −≺ P (Y, X)
P (Y, X) −≺ Q(X, Y )

T (P+ v P ) =df P (X, Z) −≺
P (X, Y ) ∧ P (Y, Z)

Besides, rules of the form “(H ∧ H ′) −≺ B” are
rewritten as two rules “H −≺ B” and “H ′ −≺ B”,
rules of the form “H −≺ H ′ −≺ B” are rewrit-
ten as “H −≺ B ∧ H ′”, and rules of the form
“H −≺ (B ∨ B′)” are rewritten as two rules
“H −≺ B” and “H −≺ B′”.

Example 2 Consider the DL knowledge base KB
shown in Example 1, the DeLP P in Figure 2
is obtained by applying the mapping T to KB.
Rules are numbered in Roman and each rule cor-
responds to the equivalent rule numbered in Ara-
bic in Figure 1. ( e.g., T ((3)) = (iii)). Moreover
when one rule from Example 1 generates more
than one rule in P according to T , the resulting
rules are superscripted to show their origin ( e.g.,
T ((10)) = {(x), (x′), (x”)}).

For the sake of example, rule (6) in Figure 1 ex-
pressing that every penguin which was operated by
a genetic surgeon is a genetically altered penguin
is now mapped into rule (vi) in Figure 2:

geneticallyAlteredPenguin(X) −≺

penguin(X),
isOperatedBy(X, Y ),
geneticSurgeon(Y )

which now expresses that every penguin which was
operated by a genetic surgeon is usually a genet-
ically altered penguin.

Moreover, rule (10) in Figure 1 saying that the
set of genetic surgeons is exactly the intersection
of the set of geneticists and the set of surgeons is
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now expressed as the three rules:

(x) geneticSurgeon(X) −≺

genetist(X), surgeon(X);
(x′) geneticist(X) −≺ geneticSurgeon(X);
(x”) surgeon(X) −≺ geneticSurgeon(X)

expressing that (x) an individual is usually a ge-
netic surgeon every time she is both a geneticist
and a surgeon, (x’) an individual is usually a ge-
neticist if she is a genetic surgeon, and (x”) an
individual is usually a surgeon when she is a ge-
netic surgeon.

Set ∆ of defeasible rules:
(i) animal(X) −≺ bird(X);

(ii) fly(X) −≺ bird(X);
(iii) bird(X) −≺ eagle(X);
(iv) bird(X) −≺ penguin(X);
(v) ∼fly(X) −≺ penguin(X);

(vi) geneticallyAlteredPenguin(X) −≺

penguin(X),
isOperatedBy(X, Y ),
geneticSurgeon(Y );

(vii) fly(X) −≺ geneticallyAlteredPenguin(X);
(viii) ∼fly(X) −≺ eagle(X), hasBrokenWing(X);
(ix) operates(X, Y ) −≺ isOperatedBy(Y, X);
(ix′) isOperatedBy(X, Y ) −≺ operates(Y, X);
(x) geneticSurgeon(X) −≺

geneticist(X), surgeon(X);
(x′) geneticist(X) −≺ geneticSurgeon(X);
(x”) surgeon(X) −≺ geneticSurgeon(X)

Set Π of facts:
(xi) penguin(opus);

(xii) eagle(avenger);
(xiii) hasBrokenWing(avenger);
(xiv) geneticist(frankenstein);
(xv) surgeon(frankenstein);

(xvi) operates(frankenstein, opus)

Figure 2. DeLP knowledge base P = (Π, ∆)

obtained from KB = (T, A) via T

5 An Approach to Handling
Inconsistencies in Ontol-
ogy Definitions based on
DeLP

It is known that ontologies expressed in on-
tology languages such as OWL-DL can be ex-
pressed as equivalent DL ontologies. Although

there exist implementations of DL reasoners (e.g.,
Racer [14]), they are incapable of dealing with
inconsistent ontologies. As explained above, our
proposal consists of transforming an ontology ex-
pressed in a DL into a DeLP program. Thus,
inconsistencies arising from inconsistent ontology
definitions will be handled by the DeLP engine by
performing a dialectical analysis in order to deter-
mine which conclusions arising from the derived
DeLP program (and indirectly from the original
ontology) are warranted. In this section, we will
address the issues of reasoning about instances
provided an inconsistent ontology definition, rea-
soning about the class structure of an inconsistent
ontology definition provided no instance informa-
tion is given, and finally will discuss a possible
architecture for using our approach in the con-
text of the Semantic Web.

5.1 Reasoning about Instances

As explained in Section 1, our proposal consists
of transforming an ontology ODL = (T,A) into
a DeLP program P = (Π,∆) where axioms (i.e.,
the Tbox T ) in ODL will correspond to a set ∆
of defeasible rules in P while information about
individuals in ODL (i.e., the Abox A) will corre-
spond to the set Π of facts in P.

As the set Π comes from the transformation of
the Abox A, it is solely composed of facts. For
the sake of simplicity we will asume that Π is con-
sistent as required for the DeLP framework (that
is, the set Φ is consistent if there is neither a pair
of facts C(a) and ∼C(a) nor R(a, b) and ∼R(a, b)
where C is a concept name, R is a property name,
and a and b are individual constants). Clearly, in
case Π is inconsistent, the pair of conflicting lit-
erals can be easily detected and removed.

When the original DL ontologyODL is consistent,
the resulting DeLP program P is also consistent.
In the case that ODL is inconsistent, this situ-
ation is reflected by the fact that contradicting
facts can be entailed by ODL. When considering
the translated ontology into P = (Π,∆), the sit-
uation of ODL being inconsistent is reflected into
an inconsistent Π∪∆. This situation will lead to
the derivation of conflicting literals as shown in
the next example.

Example 3 Consider the DL ontology KB =
(T,A) presented in Example 1. Notice that in
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this case contradictory conclusions are entailed.
For example, KB |= fly(avenger) and that KB |=
¬fly(avenger) are entailed. The same happens
with fly(opus) and ¬fly(opus). Considering now
the DeLP program P presented in Example 2 and
obtained from KB, this situation is reflected by the
existence of arguments 〈A1, f ly(avenger)〉 and
〈A2,∼ fly(avenger)〉 as well as 〈B1, f ly(opus)〉
and 〈B2,∼fly(opus)〉 (see Example 4 for details).

As explained in Section 3, given a query Q in
DeLP, consideration of conflicting arguments on
behalf and against Q leads to a process known as
dialectical argumentation in which defeaters for
arguments favoring Q have to be taken into ac-
count as well as defeaters for these defeaters and
so on. In the case of having an inconsistent DL
ontology ODL and given a query Q, the resulting
DeLP program will be fed into the DeLP engine to
carry out such dialectical analysis. The following
example depicts the above described situation.

Example 4 Inferences in the DL KB KB, such
as KB |= fly(opus), are modeled in the DeLP
program P as P |∼ fly(opus). However, as the
derived program P is inconsistent, we have that
both P |∼ fly(opus) and P |∼ ∼fly(opus), lead-
ing to the construction of conflicting arguments.

Next we will show the arguments arising from
P and will characterize their interactions in the
dialectical analysis that arises when considering
them. There exists an argument A1 supporting
the defeasible conclusion that Avenger flies, i.e.,
〈A1, f ly(avenger)〉 where:

A1 = {(fly(avenger) −≺ bird(avenger));
(bird(avenger) −≺ eagle(avenger))}

Assuming that the rule comparison establishes
that (8) � (2), this argument is defeated by an
argument 〈A2,∼ fly(avenger)〉 supporting that
Avenger does not fly because he has a broken
wing, where:

A2 = {∼fly(avenger) −≺ eagle(avenger),
hasBrokenWing(avenger)}

Argument A2 has no defeaters, argument A1 is
therefore defeated and it is marked as a D-node.
The corresponding dialectical tree is depicted in
Figure 3.(i).

Likewise there exists an argument B1 support-
ing the defeasible conclusion that Opus flies, i.e.,

〈B1, f ly(opus)〉 where:

B1 = {(fly(opus) −≺ bird(opus));
(bird(opus) −≺ penguin(opus))}

Another argument 〈B2,∼ fly(opus)〉 can be de-
rived from P, supporting the conclusion that Opus
does not fly, with:

B2 = {∼fly(opus) −≺ penguin(opus)}

Argument B2 defeats B1 provided that the rule
comparison criterion establishes that (5) � (2).
However, provided that (7) � (5), argument B2

is defeated by another argument 〈B3, f ly(opus)〉
which reinstates argument B1, where:

B3 = {(fly(opus) −≺

geneticallyAlteredPenguin(opus));
(geneticallyAlteredPenguin(opus) −≺

penguin(opus),
isOperatedBy(opus, frankenstein),
geneticSurgeon(frankenstein));

(isOperatedBy(opus, frankenstein) −≺

operates(frankenstein, opus));
(geneticSurgeon(frankenstein) −≺

geneticist(frankenstein),
surgeon(frankenstein))}

Hence the associated dialectical tree for fly(opus)
has three nodes, with the root labelled as U-node
(see Figure 3.(ii)). The original argument for
fly(opus) is therefore warranted.

There exist two more arguments 〈C1, animal(avenger)〉
and 〈D1, animal(opus)〉 supporting the defeasible
conclusions that both Avenger and Opus are ani-
mals resp., where:

C1 = {(animal(avenger) −≺ bird(avenger));
(bird(avenger) −≺ eagle(avenger))}

D1 = {(animal(opus) −≺ bird(opus));
(bird(penguin) −≺ penguin(opus))}

These two arguments have no defeaters, they are
therefore warranted and the resulting dialectical
trees will have a unique node, as depicted in Fig-
ure 3.(iii–iv).
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Figure 3. Dialectical trees for: (i) fly(avenger),

(ii) fly(opus), (iii) animal(avenger), and (iv)

animal(opus)

(I) animal(X) ← bird(X);
(II) fly(X) ← bird(X);
(III) bird(X) ← eagle(X);
(IV ) bird(X) ← penguin(X);
(V ) ¬fly(X) ← penguin(X);
(V I) geneticallyAlteredPenguin(X) ←

penguin(X),
isOperatedBy(X, Y ),
geneticSurgeon(Y );

. . .
(X) geneticSurgeon(X) ←

geneticist(X),
surgeon(X);

(X ′) geneticist(X) ← geneticSurgeon(X);
(X”) surgeon(X) ← geneticSurgeon(X);

⊥ ← animal(X),¬animal(X)
⊥ ← bird(X),¬bird(X)
⊥ ← fly(X),¬fly(X)
⊥ ← penguin(X),¬penguin(X)
. . .

Figure 4. AnsProlog¬,⊥ program PLP obtained

from KB via Grosof et al.’s mapping

5.2 Reasoning about Class Struc-
ture

Given an ontology ODL = (T,A) with Abox
A = ∅, the resulting DeLP program P = (Π,∆)
obtained when applying the transformation func-
tion T presented above has no facts (i.e., Π = ∅).
Thus, the DeLP engine will not be able to infer
any information from ∆ alone. In the case that
Abox = ∅ and the ontology still was unsatisfiable,
it would be desirable to be able to detect this sit-
uation in the framework of logic programming.

The solution to this problem consists of trans-
lating the Tbox set T to an AnsProlog¬,⊥ pro-
gram [2] enriched with information regarding
class unsatisfiability. Each DL axiom in T is

transformed according to Grosof et al.’s map-
ping [13]. Besides for each class name, a con-
straint is added to prevent the existence of com-
plementary literals.

Example 5 Consider again the DL knowledge
base KB presented in Example 1. Transforming
the Abox set A into AnsProlog¬,⊥ results in the
program PLP presented in Figure 4. Every rule
equivalent to the respective rule enumerated with
lowercase Romans in Figure 1 is enumerated in
uppercase Romans.

5.3 An Architecture for Handling
Inconsistent Ontologies in the
Web

In this section we will present a possible architec-
ture based on a mediator agent which integrates a
web browser with a web form for interaction with
a human user. The web browser will ultimately
access a remote database stored in the web whose
data is defined according to some ontology defini-
tions that might be inconsistent. Our proposal for
inconsistent ontology management therefore con-
sists in proposing a web service to which a web
browser can connect on behalf of a human user
who wants to query a certain database located
somewhere in the web. The architecture for the
approach is depicted in Figure 5.

We will assume that the web browser is able to
query a remote database Db in the web where
the information contained in its data records must
be interpreted according to an ontology definition
OOwl also accesible in the web. Incidentally we
will also assume the ontology definition OOwl will
be stored in an ontology server.

The proposed system works as follows. The user
issues through the web browser a query Q w.r.t.
database Db and ontology OOwl. This query
is processed by the query solver who asks the
AnsProlog reasoner if OOwl is consistent which
is retrieved by the OWL-DL to AnsProlog trans-
lator from the ontology server. If the ontology
OOwl is inconsistent, it is translated to a DeLP
program P = (Π,∆) along with the records from
database Db by the OWL-DL to DL and DL to
DeLP translators. Using P, the DeLP engine per-
forms a dialectical analysis to determine the epis-
temic status A of Q w.r.t. to P. Finally the epis-
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temic status of Q is returned as answer A which
will be displayed in the web browser.

In order to perform the dialectical process of Q

w.r.t. P, we will also assume that there exists a
human expert who provides the comparison cri-
terion � for performing rule comparison into the
DeLP engine.

� �

� �
Database
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OWL-DL
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Figure 5. A possible architecture for handling inconsistent ontology definitions in DeLP

6 Discussion

Given a DL KB, our current approach does not
allow to obtain an equivalent DeLP program.
Moreover, given a DL sentence, only defeasible
rules are generated. Next we discuss on the
soundness and completeness of our approach as
well as possible extensions for dealing with both
strict and defeasible rules when translating a DL
KB into DeLP.

In a DL setting, a Tbox sentence of the form
C v D is equivalent to a FOL sentence of the
form (∀x)(C(x)→ D(x)) [1]. Therefore, from the
former FOL sentence and an Abox sentence C(a),
the conclusions D(a) can be reached. Moreover,
from ¬D(a), ¬C(a) can be obtained too.

In contrast to DL, in our approach a DL sentence
C v D is translated into DeLP as a defeasible
rule D(X) −≺ C(X). As the notion of defeasi-
ble derivation in DeLP corresponds to the usual
query-driven SLD derivation used in logic pro-
gramming, performed by backward chaining on
both strict and defeasible rules, a fact C(a) does

permit the derivation of D(a) but ∼D(a) does not
permit deriving ∼C(a). Based on these observa-
tions, in presence of a consistent DL knowledge
base our transformation is sound (i.e., warranted
DeLP arguments are valid DL inferences) but not
complete (i.e., some valid DL inferences are not
derivable into DeLP). Moreover, notice that in
the case the original DL ontology is consistent,
as the DeLP program obtained by our method is
also consistent, all of the inferences obtained are
going to be warranted arguments [4].

Although our current approach only deals with
the generation of defeasible rules, generation of
both strict and defeasible rules during the trans-
lation would be a desirable feature. A possible
solution to this problem consists of partitioning
the DL KB into a set of sentences to be trans-
lated as strict rules and a set of sentences to be
translated as defeasible rules. Then when receiv-
ing a DL KB KB = (T,A), KB is partitioned
into KB = (TS ∪TD, A) such that TS (TD) stands
for DL sentences to be strict (defeasible, resp.)
rules, T = TS ∪ TD, and TS ∩ TD = ∅. The
DeLP program P obtained from T is now going
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to be P = (T (TS)∪T (A), T (TD)). Notice that as
DeLP requires that strict knowledge to be non-
contradictory, consistency in the set T (TS)∪T (A)
must be enforced by the knowledge engineer who
is making the partitioning.

7 Related Work

Racer [14] implements a TBox and ABox rea-
soner for the logic SHIQ, it was also the first
full-fledged ABox description logic system for a
very expressive logic and is based on optimized
sound and complete algorithms. In constrast to
our proposal, it is not able to deal with inconsis-
tent ontology definitions.

Grosof et al. [13] show how to interoperate, se-
mantically and inferentially, between the leading
Semantic Web approaches to rules (RuleML Logic
Programs) and ontologies (OWL/DAML+OIL
Description Logic) via analyzing their expressive
intersection. To do so, we define a new interme-
diate knowledge representation (KR) contained
within this intersection: Description Logic Pro-
grams (DLP), and the closely related Description
Horn Logic (DHL) which is an expressive frag-
ment of first-order logic (FOL). They show how
to perform DLP-fusion: the bidirectional transla-
tion of premises and inferences (including typical
kinds of queries) from the DLP fragment of DL to
LP, and vice versa from the DLP fragment of LP
to DL. Part of our article is based on Grosof et
al. work as we found the algorithm for translating
DL ontologies into DeLP on their work. However,
as Grosof et al. work uses standard Prolog rules,
they are not able to deal with inconsistent DL
knowledge bases as our proposal does.

In [15], Heymans and Vermier extend the descrip-
tion logic SHOQ(D) with a preference order on
the axioms. With this strict partial order cer-
tain axioms can be overruled, if defeated with
more preferred ones. They also impose a pre-
ferred model semantics, thus effectively introduc-
ing nonmonotonicity into SHOQ(D). They ar-
gue that since a description logic can be viewed as
an ontology language, or a proper translation of
one, they obtain a defeasible ontology language.
Similarly to Heymans and Vermier’s work we al-
low for inferencing from inconsistent ontologies by
considering subsets of of the original KB (argu-
ments), comparing them in terms of a rule com-
parison criterion. However, we choose to trans-
late the original DL KB into DeLP.

In [7], Eiter et al. propose a combination of
logic programming under the answer set seman-
tics with the description logics SHIF(D) and
SHOIN (D), which underlie the Web ontology
languages OWL Lite and OWL DL, resp. This
combination allows for building rules on top of
ontologies but also, to a limited extent, building
ontologies on top of rules. In contrast to our ap-
proach, they keep separated rules and ontologies
and handle exceptions by codifying them explic-
itly in programs under answer set semantics.

8 Conclusions

We have presented a novel argument-based ap-
proach for handling inconsistent ontology defini-
tions in the Semantic Web. As discussed in the
introduction, given an ontology expressed in a DL
we proposed translating it into a DeLP program.
Then given a query posed w.r.t. the DL ontology,
it will be answered w.r.t. to the DeLP program.

Our approach is not able to deal with axioms
that requires the construction of rules with a dis-
junction in the head which are not currently sup-
ported by DeLP, a possible extension to this work
would consist in enhancing DeLP with the possi-
bility of handling disjunctions in the head of the
rules.

Other issue associated with the approach that
needs to be addressed is given by the mapping
of equivalence DL axioms into DeLP rules. Cur-
rently a DL axiom of the form ‘C ≡ D’ gener-
ates two rules of the form ‘C(X) −≺ D(X)’ and
‘D(X) −≺ C(X)’. This situation could clearly
produce loops during the argument construction
when solving queries in actual DeLP programs.

One of the goals of the Semantic Web initiative
consists of providing methods of entailing infor-
mation from ontologies that scale to the size of the
web. Cecchi et al. [5] have proved that the com-
plexity of the decision problems of determining
whether a set of defeasible rules is an argument
for a literal under a DeLP program and deter-
mining whether there exists an argument for a
given literal are P-complete and NP, respectively.
Other issue to address involves eliminating the
assistance of a human user in order to provide a
rule comparison criterion for performing the di-
alectical process. Part of our current research is
focused on these issues.
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