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Abstract

Abstract argumentation frameworks have played a
major role as a way of understanding argument-
based inference, resulting in different argument-
based semantics. In order to make such seman-
tics computationally attractive, suitable proof pro-
cedures are required, in which a search space of ar-
guments is examined to find out which arguments
are warranted or ultimately acceptable. This pa-
per introduces a novel approach to model warrant
computation in a skeptical abstract argumentation
framework. We show that such search space can be
defined as a lattice, and illustrate how the so-called
dialectical constraints can play a role for guiding
the efficient computation of warranted arguments.

1 Introduction and Motivations

Abstract argumentation frameworks have played a major role
as a way of understanding argument-based inference, result-
ing in different argument-based semantics. In order to com-
pute such semantics, efficient argument-based proof proce-
dures are required for determining when a given argumentA
is warranted. This involves the analysis of a potentially large
search space of candidate arguments related toA by means of
an attack relationship.

This paper presents a novel approach to model such search
space for warrant computation in a skeptical abstract argu-
mentation framework. We show that the above search space
can be defined as a lattice, and illustrate how some constraints
(called dialectical constraints) can play a role for guiding the
efficient computation of warranted arguments. The rest of
this paper is structured as follows. Section 2 presents the ba-
sic ideas of an abstract argumentation framework with dialec-
tical constraints. Section 3 shows how so-called dialectical
trees can be used to analyze the search space for computing
warrants, representing it as a lattice. In Section 4 we analyze
different criteria which can lead to compute warrant more ef-
ficiently on the basis of this lattice characterization. Finally,
in Sections 5 and 6 we discuss some related work and present
the main conclusions that have been obtained.

2 An Abstract Argumentation Framework
with Dialectical Constraints

In this paper we are concerned with the study of warrant
computation in argumentation systems, with focus on skep-
tical semantics for argumentation. As a basis for our analysis
we will use an abstract argumentation framework (following
Dung’s seminal approach to abstract argumentation[Dung,
1995]) enriched with the notion ofdialectical constraint.

Definition 1 [Dung, 1995] An argumentation frameworkΦ is
a pair〈Args, R〉, whereArgs is a finite set of arguments andR is
a binary relationR ⊆ Args × Args. The notation(A,B) ∈ R (or
equivalentlyARB) means thatA attacksB.

A dialectical constraint imposes a restriction characteriz-
ing when a given argument sequenceλ is valid in a frame-
work Φ. An argumentation theory is defined by combining
an argumentation framework with a particular set of dialecti-
cal constraints. Formally:

Definition 2 Let Φ = 〈Args, R〉 be an argumentation framework.
A dialectical constraintC in the context ofΦ is any functionC :
LinesΦ → {True, False}, whereLinesΦ denotes the set of all
possible sequences of arguments[A0,A1,A2, . . . ,Ak] in Φ where
for any pair of argumentsAi,Ai+1 it holds thatAi R Ai+1.

Definition 3 An argumentation theoryT (or just a theoryT ) is
a pair (Φ,DC), where Φ is an argumentation framework, and
DC = {C1,C2, . . . ,Ck} is a finite (possibly empty) set ofdi-
alectical constraints.

Given a theoryT = (Φ,DC), the intended role ofDC is
to avoidfallaciousreasoning[Hamblin, 1970; Rescher, 1977]
by imposing appropriate constraints on argumentation lines
to be considered rationallyacceptable. It must be noted that
a full formalization for dialectical constraints is outside the
scope of this work. We do not claim to be able to identify
every one of such constraints either, as they may vary from
one particular argumentation framework to another; that is
the reason whyDC is included as a parameter inT .

Argument games provide a useful form to characterize
proof procedures for skeptical semantics in argumentation.1

Such games model defeasible reasoning as a dispute be-
tween two parties (ProponentandOpponentof a claim), who

1See an in-depth discussion in[Prakken, 2005].



exchange arguments and counterarguments, generatingdia-
logues. A propositionQ is provably justified on the basis
of a set of arguments if its proponent has awinning strategy
for an argument supportingQ, i.e. every counterargument
(defeater) advanced by the Opponent can be ultimately de-
feated by the Proponent. Dialogues in such argument games
have been given different names (dialogue lines, argumenta-
tion lines, dispute lines, etc.). The set of all possible dialogues
can also be suitably defined as a tree structure (called dialec-
tical tree or argument tree).2 In the next subsection we extend
such definitions in the context of an argumentation theory.

2.1 Argumentation Line. Bundle set
Definition 4 Let T = (Φ,DC) be an argumentation theory.
An argumentation lineλ in T is any finite sequence of argu-
ments [A0, A1, . . . , An] in LinesΦ. A subsequenceλ′ =
[A0,A1,A2, . . . ,Ak], k ≤ n, will be called aninitial argumen-
tation segment(or just initial segment) in λ of length k, denoted
bλck. Whenk < n we say thatλ′ is aproper initial segmentin λ.

We will say thatλ is rooted inA0, writing | λ | = s to denote
thatλ hass arguments. We will also writeLinesA to denote the set
of all argumentation lines rooted inA in the theoryT .

Example 1 Consider a theoryT = (Φ,DC), with DC = ∅,
where the setArgs is {A0, A1, A2, A3, A4 }, and assume that
the following relationships hold:A1 defeatsA0, A2 defeatsA0,
A3 defeatsA0,A4 defeatsA1. Three different argumentation lines
rooted inA0 can be obtained, namelyλ1 = [A0, A1 , A4 ], λ2 =
[A0,A1 ,A2 ], andλ3 = [A0,A3 ]. In particular,bλ1c2 = [A0,A1]
is an initial argumentation segment inλ1.

Example 2 Consider a theoryT ′ = (Φ,DC) where the setArgs
is {A0,A1 }, and assume that the following relationships hold:A0

defeatsA1, andA1 defeatsA0. An infinite number of argumenta-
tion lines rooted inA0 can be obtained (e.g.λ1 = [A0 ], λ2 = [A0,
A1 ], λ3 = [A0,A1 ,A0 ], λ4 = [A0,A1 ,A0,A1 ], etc.).

Remark 1 Note that from Def. 4, given an argumentation line[A0,
A1,A2, . . . ,An] every subsequence[Ai,Ai+1, . . .Ai+k] with 0 ≤
i, i+k ≤ n is also an argumentation line. In particular, every initial
argumentation segment is also an argumentation line.

Intuitively, an argumentation lineλ is acceptable iff it sat-
isfies every dialectical constraint of the theory it belongs to.
Formally:

Definition 5 An argumentation lineλ is acceptablewrt T =
(Φ,DC) iff Ci(λ) = True, ∀Ci ∈DC.

In what follows, we will assume without loss of gener-
ality that the notion of acceptability imposed by dialecti-
cal constraints is such that ifλ is acceptable wrt a theory
T = (Φ,DC), then any subsequence ofλ is also acceptable.

Example 3 Consider the theoryT ′ in Ex. 2, and assume that
DC={C1}, with C1 = {repetition of arguments is not allowed}.3
Thenλ1 andλ2 are acceptable argumentation lines inT ′, butλ3 and
λ4 are not.

2For in-depth discussion see[Prakken and Vreeswijk, 2002].
3Note that this corresponds to a functionC1(λ) = True iff

6 ∃Ai,Aj in λ such thatAi =Aj , andFalse otherwise.

Definition 6 Let T be an argumentation theory, and letλ andλ′

be two acceptable argumentation lines inT . We will say thatλ′ ex-
tendsλ in T iff λ = bλ′ck, for somek < | λ′ | (i.e. λ′ extendsλ iff
λ is a proper initial argumentation segment ofλ′).
We will say thatλ is exhaustiveif there is no acceptable argumenta-
tion line λ′ in T such that| λ | < | λ′ |, and for somek, λ = bλ′ck
(i.e. 6 ∃λ′ such that extendsλ in T ). Non-exhaustive argumentation
lines will be referred to aspartial argumentation lines.

Example 4 Consider the theoryT presented in Ex. 1. Thenλ1,
λ2 andλ3 are exhaustive argumentation lines whereasbλ1c2 is a
partial argumentation line. In the case of the theoryT ′ in Ex. 2,
the argumentation lineλ2 extendsλ1. Argumentation lineλ2 is
exhaustive, as it cannot be further extended on the basis ofT ′ with
the dialectical constraint introduced in Ex. 3.

We will distinguish the setS = {λ1, λ2, . . . , λk} of all
argumentation lines rooted in the same initial argument and
with the property of not containing lines that are initial sub-
sequences of other lines in the set.

Definition 7 Given a theoryT , a setS = {λ1, λ2, . . . , λn} of
argumentation lines rooted in a given argumentA, denotedSA, is a
bundle setwrt T iff 6 ∃λi, λj ∈ SA such thatλi extendsλj .

Example 5 Consider the theoryT = (Φ,DC) from Ex. 1, and
the argumentation linesλ1, λ2, andλ3. ThenSA0 = {λ1, λ2, λ3}
is a bundle set of argumentation lines wrtT .

2.2 Dialectical Trees
A bundle setSA is a set of argumentation lines rooted in a
given argumentA. Such set can be thought of as a tree struc-
ture, where every line corresponds to a branch in the tree.
Formally:

Definition 8 Let T be a theory, and letA be an argument inT ,
and letSA = {λ1, λ2, . . . , λn} be a bundle set of argumentation
lines rooted inA. Then, thedialectical treerooted inA based on
SA, denotedTA, is a tree structure defined as follows:
1) The root node ofTA isA;
2) LetF={tail(λ), for everyλ ∈ SA}, andH={head(λ), for every
λ ∈ F}.4 If H = ∅ thenTA has no subtrees. Otherwise, ifH =
{B1, . . . ,Bk}, then for everyBi ∈ H, we definegetBundle(Bi) =
{λ ∈ F | head(λ) = Bi}. We putTBi as an immediate subtree of
A, whereTBi is a dialectical tree based ongetBundle(Bi). We will
write TreeA to denote the family of all possible dialectical trees
based onA. We will represent asTreeT the family of all possible
dialectical trees in the theoryT .

Example 6 Consider the theoryT = (Φ,DC) from Ex. 1. In that
theory it holds thatSA0 = {λ1, λ2, λ3} is a bundle set. Fig. 1(a)
shows an associated dialectical treeTA0 .

Clearly, Definition 8 induces an equivalence relation on the
set of allTreeA . Formally:

Definition 9 Let T be a theory, and letTreeA be the set of all
possible dialectical trees rooted in an argumentA in T . We will
say thatTA is equivalent toT ′A, denotedTA ≡τ T ′A iff they are
obtained from the same bundle setSA.

4The functionshead(·) andtail(·) have the usual meaning in list
processing.
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Figure 1:(a)Exhaustive dialectical treeTA0 for Ex. 6; (b)resulting
tree after applying and-or marking (Def.14);(c)–(d) two other ex-
haustive dialectical trees belonging to the equivalence classTA0

Given an argumentA, there is a one-to-one correspon-
dence between a bundle setSA of argumentation lines rooted
in A and the corresponding equivalence class of dialectical
trees that share the same bundle set as their origin (as speci-
fied in Def. 8). Each member of an equivalence class repre-
sents a different way in which a tree could be built. Each par-
ticular computational method used to generate the dialectical
tree from the bundle set will produce one particular member
on the equivalence class.

Definition 10 Let T be an argumentative theory, and letSA be
a bundle set of argumentation lines rooted in an argumentA of
T . We define the mappingT : ℘(LinesA) \ {∅} 7→ TreeA as
T(SA) =def TA, whereTreeA is the quotient set ofTreeA by ≡τ ,
andTA denotes the equivalence class ofTA.

Proposition 1 For any argumentA in an argumentative theoryT ,
the mappingT is a bijection.5

As the mappingT is a bijection, we can also define the
inverse mappingS =def T−1. In what follows, we will use
indistinctly aset notation(a bundle set of argumentation lines
rooted in an argumentA) or atree notation(a dialectical tree
rooted inA), as the former mappingsS andT allow us to go
from any of these notations to the other.

Proposition 2 Let T be a theory, andTA a dialectical tree inT .
Then it holds that any subtreeT ′A of TA, rooted inA, is also a
dialectical tree wrtT .

2.3 Acceptable dialectical trees
Definition 11 Let T be a theory. A dialectical treeTA in T is
acceptableiff every argumentation line in the associated bundle set
S(TA) is acceptable. We will distinguish the subsetATreeA (resp.
ATreeT ) of all acceptable dialectical trees inTreeA (resp.TreeT ).

As acceptable dialectical trees are a subclass of dialectical
trees, all the properties previously shown apply also to them.
In the sequel, we will just write “dialectical trees” to refer to
acceptable dialectical trees, unless stated otherwise.

5Proofs not included for space reasons.

Definition 12 A dialectical treeTA will be calledexhaustiveiff it
is constructed from the setSA of all possible exhaustive argumen-
tation lines rooted inA, otherwiseTA will be calledpartial.

The exhaustive dialectical tree for any argumentA can be
proven to be unique.

Proposition 3 Let T be a theory, and letA be an argument inT .
Then there exists a unique exhaustive dialectical treeTA in T (up to
an equivalence wrt≡τ as given in Def. 9)

Acceptable dialectical trees allow to determine whether the
root node of the tree is to be accepted (ultimatelyundefeated)
or rejected (ultimatelydefeated). A marking functionpro-
vides a definition of such acceptance criterion. Formally:

Definition 13 Let T be a theory. A marking criterion forT is a
functionMark : TreeT → {D, U}. We will write Mark(Ti) = U
(resp.Mark(Ti) = D) to denote that the root node ofTi is marked
asU -node (resp.D-node).

Several marking criteria can be defined for capturing skep-
tical semantics for argumentation. A particular criterion
(which we will later use in our analysis for strategies for com-
puting warrant) is theand-or markingof a dialectical tree,
which corresponds to Dung’s grounded semantics[Dung,
1995].

Definition 14 Let T be a theory, and letTA be a dialectical tree.
The and-or marking ofTA is defined as follows:
1) If TA has no subtrees, thenMark(TA) = U .
2) If TA has subtreesT1, . . . , Tk then a)Mark(TA) = U iff
Mark(Ti) = D, for all i = 1 . . . k. b) Mark(TA) = D iff ∃ Ti

such thatMark(Ti) = U , for somei = 1 . . . k.

Proposition 4 Let T be a theory, and letTA be a dialectical tree.
The and-or marking defined in Def. 14 assigns the same mark to all
the members ofTA.

Definition 15 LetT be an argumentative theory andMark a mark-
ing criterion forT . An argumentA is awarranted argument(or just
a warrant) in T iff the exhaustive dialectical treeTA is such that
Mark(TA) = U .

Example 7 Consider the exhaustive dialectical treeTA0 in Ex. 6
shown in Fig. 1(a). Fig. 1(b) shows the corresponding marking by
applying Def. 14, showing thatA0 –the root ofTA0– is an ultimately
defeated argument, i.e.Mark(TA0) = D. HenceA0 is not a war-
ranted argument. Fig. 1(c)–(d) shows two marked dialectical trees
belonging to the same equivalence classTA0 .

3 Warrant Computation via Dialectical Trees
Our main concern is to model warrant computation in skepti-
cal argumentation frameworks, and in such a case tree struc-
tures lend themselves naturally to implementation. In fact,
some implementations of skeptical argumentation systems
(e.g. DeLP[Garćıa and Simari, 2004]) rely on tree structures
(such as dialectical trees) which can be computed by perform-
ing backward chaining at two levels. On the one hand, ar-
guments are computed by backward chaining from a query
(goal) using a logic programming approach (e.g. SLD reso-
lution). On the other hand, dialectical trees can be computed
by recursively analyzing defeaters for a given argument, de-
featers for those defeaters, and so on. In particular, in more
complex and general settings (such as admissibility seman-
tics) dialectical proof procedures have been developed[Dung



et al., 2006] using a similar strategy to compute warranted
belief.

In our abstract model the process of building an arbitrary
dialectical treeTA0 can be thought of as acomputationstart-
ing from an initial tree (consisting of a single node) and
evolving into more complex trees by adding new arguments
(nodes) stepwise. Elementary steps in this computation can
be related via a precedence relationship “v” among trees:

Definition 16 Let T be a theory, and letTA, T ′A be acceptable
dialectical trees rooted in an argumentA. We define a relationship
v ⊆ TreeA × TreeA . We will write TA @ T ′A wheneverT ′A can
be obtained fromTA by extending some argumentation lineλ in TA
by exactly one argument. As usual, we writeTAvT ′A iff TA = T ′A
or TA@T ′A. We will also writeTAv∗T ′A iff there exists a (possibly
empty) sequenceT1, T2, . . . ,Tk s.t.TA = T1v . . .vTk = T ′A.

Every dialectical treeTi can be seen as a ‘snapshot’ of the
status of a disputation between two parties (proponent and op-
ponent), and the relationship “v” allows to capture all possi-
ble evolutions of a given disputation.6 In particular, note that
for any argumentative theoryT , given an argumentA the
ordered set(TreeA ,v∗) is a poset, where the least element is
A and the greatest element is the exhaustive dialectical tree
TA. From Def. 16 the notion of exhaustive dialectical tree
can be recast as follows: A dialectical treeTi is exhaustive iff
there is noTj 6= Ti such thatTi @ Tj .

We are now concerned with the following question:can
we enumerate all possible ways of computing the exhaustive
dialectical treeTA rooted in a given initial argumentA? The
answer is yes. In fact, as we will see in the next definitions,
we can provide a lattice characterization for the space of all
possible dialectical trees rooted in a given argumentA on the
basis of two operations:join of dialectical trees (∨) (result-
ing in a new tree corresponding to the ‘union” ofT1 andT2)
and meet of dialectical trees (∧) (resulting in a new tree cor-
responding to the “intersection” ofT1 andT2). Formally:

Definition 17 Let T be an argumentative theory, and letT1 andT2

be dialectical trees rooted inA. We define themeetand join of T1

andT2, (writtenT1 ∧ T2 andT1 ∨ T2) as follows:
• λ is an argumentation line inT1 ∨ T2 iff 1) λ ∈ T1 and there is
no λ′ ∈ T2 such thatλ′ extends λ, or 2) λ ∈ T2 and there is no
λ′ ∈ T1 such thatλ′ extends λ.
• λ is an argumentation line inT1 ∧ T2 iff λ = bλ1ck = bλ2ck, for
somek > 0 such thatλ1 ∈ T1 andλ2 ∈ T2 and there is noλ′ that
extendsλ satisfying this situation.

For any argumentation theoryT the set of all possible ac-
ceptable dialectical trees rooted in an argumentA ∈ T can
be conceptualized as a lattice. Formally:

Lemma 1 Let A be an argument in a theoryT , and let
(ATreeA,v∗) be the associated poset. Then(ATreeA,∨,∧) is a
lattice.

Given the lattice(ATreeA,∨,∧), we will write T ⊥A to de-
note the bottom element of the lattice (i.e., the dialectical tree
involving only A as root node) andT >A to denote the top
element of the lattice (i.e., the exhaustive dialectical tree).

6Note however thatTi v Tj does not imply that one party has
advanced some argument inTi and the other party has replied inTj .
Thus our framework provides a setup to defineunique-andmulti-
move protocolsas defined by Prakken[Prakken, 2005].
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Figure 2:Lattice for all possible dialectical trees rooted in an argu-
mentA0 (Example 8) (top) and search space for computing dialec-
tical trees rooted inA (bottom)

Example 8 Consider the theoryT from Ex. 1, and the exhaustive
dialectical tree rooted inA0 shown in Ex. 6. The complete lattice
associated withA0 is shown in Fig. 2.

4 Computing Warrant Efficiently
We have shown that given an argumentative theoryT , for any
argumentA in T there is a lattice(ATreeA,∨,∧) whose bot-
tom element is a dialectical tree with a single node (the ar-
gumentA itself) and whose top element is the exhaustive
dialectical treeTA. In that lattice, wheneverTk = Ti∨Tj it is
the case thatTivTk andTjvTk.

In Fig. 2(top) corresponding to Example 8 we can see
that for dialectical treesT2 andT3, it holds thatMark(T2) =
Mark(T3) = D (assuming thatMark is defined as in Def. 14).
Clearly, it is the case that any treeTi whereT2vTi or T3vTi

satisfies thatMark(Ti) = D. In other words, whichever
is the way the treeT2 (or T3) evolves into a new tree in
(ATreeA0 ,∨,∧) it turns out that the associated marking re-
mains unchanged. We formalize that situation as follows:

Definition 18 Let T be an argumentation theory, and letTA be a
dialectical tree, such that for everyT ′A evolving fromTA (i.e., TA
v∗T ′A) it holds thatMark(TA) = Mark(T ′A). ThenTA is asettled
dialectical treein T .



Now we have a natural, alternative way of characterizing war-
rant.
Proposition 5 Let T be a theory, and letA be an argument inT .
ThenA is a warrant wrtT iff Mark(TA) = U , whereTA is a settled
dialectical tree.

Clearly, computing settled dialectical trees is less expen-
sive than computing exhaustive dialectical trees, as fewer
nodes (arguments) are involved in the former case. Follow-
ing Hunter’s approach[Hunter, 2004], in what follows we
will formalize the cost of computing a dialectical tree as a
functioncost : Tree

T
→ <. As explained in[Hunter, 2004],

several issues can be considered when computing such cost.
For simplicity, in our formalization we will assume thatcost
is linearly related to the number of nodes in a dialectical tree,
such thatcost(T) = C ∗Nodes(T), whereNodes(·) stands for
the number of nodes in a tree.

The next definition refines the class of settled dialectical
trees by distinguishing those trees involvingas few arguments
as possiblein order to determine whether the root of the tree
is ultimately a warranted argument according to the marking
procedure. From the many possible minimally settled dialec-
tical trees rooted in a given argumentA, a dialectical treeT
is optimally settledif 6 ∃ T ′ that is less expensive thanT.

Definition 19 A dialectical treeT is aminimally settled dialectical
tree iff there is noT ′@T such thatT ′ is a settled dialectical tree. A
dialectical treeT is anoptimally settled dialectical treeiff T is mini-
mally settled, and for any other settled treeT ′, cost(T) ≤ cost(T ′).
Example 9 Consider the theoryT from Ex. 1, and the complete
lattice (ATreeA0 ,∨,∧) shown in Fig. 2 (top). ThenT2 andT3 are
minimally settled dialectical trees.

Let SettledA, MinimalA and OptimalA be the sets of
all settled, minimally settled and optimally settled dialecti-
cal trees for an argumentA, resp. Clearly, it holds that
OptimalA ⊆ MinimalA ⊆ SettledA ⊆ ATreeA.The sets
SettledA, MinimalA andOptimalA can be identified in any
lattice(ATreeA,∨,∧), as shown in Fig. 2 (bottom). The bor-
derline on top of the lattice denotes all possible minimally
settled dialectical treesT1, . . . ,Tk rooted inA. Some of such
trees in that set may be optimal. Any dialectical tree that
evolves from settled dialectical treesT1, . . . ,Tk will be also a
settled dialectical tree. In particular, the exhaustive dialectical
tree is also settled.

4.1 Dialectical Constraints (Revisited)
As we have analyzed previously, the lattice associated with
any argumentA accounts for the whole search space for de-
tecting if A is warranted. To do so it is not necessary to
compute the exhaustive dialectical tree rooted inA; rather,
it suffices to focus search on settled dialectical trees, as they
involve less nodes and are consequently more efficient. When
determining whether a conclusion is warranted, argument-
based inference engines are supposed to compute a sequence
of dialectical treesT1, T2, . . . , Tk such thatTk is a settled
dialectical tree. For skeptical argumentation semantics, infer-
ence engines like DeLP[Garćıa and Simari, 2004] usedepth-
first searchto generate dialectical trees for queries and de-
termine if a given literal is warranted. Such search can be
improved by applyingα − β pruning, so that not every node

(argument) is computed. In other words, depth-first search
naturally favors the computation of settled dialectical trees.

Example 10 Consider the marked dialectical trees in Fig. 1(right)
belonging to the same equivalence classTA0 (Ex. 7). Then depth-
first computation usingα−β pruning will perform better on the tree
in Fig. 1(d) than on the tree in Fig. 1(c), as in the first case, only two
nodes need to be explored to obtain the final marking of the tree (A0

andA3), whereas in the second case four nodes (A0, A1, A3 and
A4) need to be traversed.

The natural question that arises next is how to compute
minimally settled trees. Given a theoryT = (Φ,DC), it
turns out that the set of dialectical constraintsDC can help
to provide a way of approximating such minimally settled
trees, based on the fact that in depth-first search theorder
in which branches are generated is important: should shorter
branches be computed before longer ones, then the resulting
search space can be proven to be smaller on an average search
tree[Ches̃nevaret al., 2005]. Usuallyheuristicsare required
to anticipate which branches are likely to be shorter than the
average. Constraints inDC can help provide such kind of
heuristics. In this setting, heuristics for efficient computation
of dialectical trees can be understood as functions which im-
prove the associated dialectical proof procedureby tending to
approximate optimally settled trees.

Example 11 In DeLP the setDC includes as a constraint thatar-
guments advanced by the proponent (resp. opponent) should not
be contradictoryin any argumentation line. The following heuris-
tics [Ches̃nevaret al., 2005] can be shown to favor the computation
of shorter argumentation lines when applying depth-first search in
the context of DeLP:if the current argumentA0 is a leaf node in
a dialectical treeT, and has different candidate defeatersA1, A2,
. . . ,Ak, then theAi which shares as many literals as possible with
A0 should be chosen when performing the depth-first computation
of TA0 . Thus, while depth-first computation of dialectical trees fa-
vors naturally the construction of minimally settled dialectical trees,
by applying this heuristics an approximation to optimally settled di-
alectical trees is obtained.

4.2 Relevance in Dialectical Trees
In [Prakken, 2001] the notion ofrelevancewas introduced
in the context of argument games and the characterization of
protocols for liberal disputes. According to[Prakken, 2001],
a move is relevant in a disputeD iff it changes the disputa-
tional status ofD’s initial move.7 In our context, dialectical
trees correspond to such disputes. In the setting presented
in [Prakken, 2001], moves are performed by both parties in-
volved in a dispute (Proponent and Opponent).

Interestingly, there is a clear relation between minimally
settled dialectical trees and this notion of relevance, as the
notion of extending an argumentation line by one argument
(as introduced in Def. 16) can be recast as performing a move.

Definition 20 Let T = (Φ,DC) be an argumentation theory, and
letTA1 , T ′A1 be acceptable dialectical trees. We will say that there is
amoveM from TA to T ′A, denoted asMove(TA, T ′A), iff TA @T ′A.

7The notion of relevance as well as some interesting properties
were further studied and refined[Prakken, 2005].



It must be remarked that a proper conceptualization of move
in argumentation demands more parameters, such as identify-
ing the argumentation line in which a argument is introduced,
who is the player (Proponent or Opponent) making the move,
etc. Such an approach has been formalized by[Prakken,
2001; 2005]. Our approach in this case is intentionally over-
simplified, as it just aims to relate the notion of relevance
and the notion of minimally settled dialectical trees. In fact,
note that Def. 20 allows us to formalize the computation of
an acceptable dialectical treeTk rooted inA0 as a sequence
of movesMove(T0, T1), Move(T1, T2), . . . , Move(Tk−1, Tk),
whereT0 is a dialectical tree with a single nodeT ⊥A0

. In fact,
Prakken’s notion ofrelevant movecan be stated in our set-
ting as follows: a moveM = Move(TA, T ′A) is relevant iff
Mark(TA) 6= Mark(T ′A).

The following proposition shows that minimally settled
trees are only those obtained by performing a sequence of
relevant moves ending in a settled dialectical tree.

Proposition 6 Let T be an argumentation theory, and letTA be a
dialectical tree. ThenTA is minimally settled iff there is a sequence
of movesM1, M2, . . . , Mk such that every moveMi is relevant,
andMk results in a settled dialectical tree.

5 Related Work
Dialectical constraints have motivated research in argumenta-
tion theory in different directions. As stated before, the main
role of such constraints is to avoidfallacious reasoning. In
our proposal dialectical constraints are left as a particular pa-
rameter to be included in the argumentation theory. Different
argument-based proof procedures have included particular di-
alectical constraints as part of their specification. In[Besnard
and Hunter, 2001] the authors present a logic of argumen-
tation which disallows repetition of arguments in argument
trees[Besnard and Hunter, 2001, p.215] Other approaches
for computing well-founded semantics via trees (e.g.[Kakas
and Toni, 1999]) defense nodes (which account for Propo-
nent’s argument in an argumentation line) cannot attack any
other defense node in the tree. Similarly, in[Dung et al.,
2006], for computing assumption-based admissible seman-
tics there is a further requirement in the proof procedure that
“the proponent does not attack itself”. Such kind of restric-
tions can be seen as particular dialectical constraints in the
context of our proposal.

Recently there have been other research oriented towards
formalizing dialectical proof procedures for argumentation.
To the best of our knowledge, none of such works formalizes
the dialectical search space through a lattice as presented in
this paper. Our work complements previous research con-
cerning the dynamics of argumentation, notably[Prakken,
2001] and [Brewka, 2001]. Although Prakken develops
a very comprehensive general framework, some important
computational issues (e.g. search space considerations) are
not taken into account.

6 Conclusions. Future Work
In this paper we have presented a novel approach to model
the search space associated with warrant computation in an
abstract argumentation framework. We have shown how the

notion of dialectical tree can be used constructively to model
different stages in the process of computing warranted argu-
ments. We have also shown how the process of computing
warrant can be recast into computing dialectical trees within
a lattice, illustrating how dialectical constraints can play a
role for guiding an efficient computation of warranted liter-
als. Part of our future work is related to studying theoretical
properties of the proposed framework, analyzing their inci-
dence for developing efficient argument-based inference en-
gines. Research in this direction is currently being pursued.
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