
Argument-based Expansion Operators in
Possibilistic Defeasible Logic Programming:

Characterization and Logical Properties

Carlos I. Chesñevar1, Guillermo R. Simari2, Lluis Godo3, and Teresa Alsinet1

1 Departament of Computer Science – Universitat de Lleida
C/Jaume II, 69 – 25001 Lleida, Spain – Email: {cic,tracy}@eps.udl.es

2 Department of Computer Science and Engineering – Universidad Nacional del Sur
Alem 1253, (8000) Bah́ıa Blanca, Argentina – Email: grs@cs.uns.edu.ar

3 Artificial Intelligence Research Institute (IIIA-CSIC)
Campus UAB - 08193 Bellaterra, Barcelona, Spain – Email: godo@iiia.csic.es

Abstract. Possibilistic Defeasible Logic Programming (P-DeLP) is a
logic programming language which combines features from argumenta-
tion theory and logic programming, incorporating as well the treatment
of possibilistic uncertainty and fuzzy knowledge at object-language level.
Defeasible argumentation in general and P-DeLP in particular provide
a way of modelling non-monotonic inference. From a logical viewpoint,
capturing defeasible inference relationships for modelling argument and
warrant is particularly important, as well as the study of their log-
ical properties. This paper analyzes two non-monotonic operators for
P-DeLP which model the expansion of a given program P by adding
new weighed facts associated with argument conclusions and warranted
literals, resp. Different logical properties for the proposed expansion op-
erators are studied and contrasted with a traditional SLD-based Horn
logic. We will show that this analysis provides useful comparison criteria
that can be extended and applied to other argumentation frameworks.

Key words: argumentation, logic programming, uncertainty, non-monotonic inference

1 Introduction and motivations

Possibilistic Defeasible Logic Programming (P-DeLP) [1] is a logic program-
ming language which combines features from argumentation theory and logic
programming, incorporating as well the treatment of possibilistic uncertainty
and fuzzy knowledge at object-language level. These knowledge representation
features are formalized on the basis of PGL [2, 3], a possibilistic logic based on
Gödel fuzzy logic. In PGL formulas are built over fuzzy propositional variables
and the certainty degree of formulas is expressed with a necessity measure. In a
logic programming setting, the proof method for PGL is based on a complete cal-
culus for determining the maximum degree of possibilistic entailment of a fuzzy
goal. The top-down proof procedure of P-DeLP has already been integrated in a

number of real-world applications such as intelligent web search [4] and natural
language processing [5], among others.

Formalizing argument-based reasoning by means of suitable inference oper-
ators offers a useful tool. On the one hand, from a theoretical viewpoint logical
properties of defeasible argumentation can be easier studied with such operators
at hand. On the other hand, actual implementations of argumentation systems
could benefit from such logical properties for more efficient computation in the
context of real-world applications. This paper analyzes two non-monotonic ex-
pansion operators for P-DeLP, intended for modelling the effect of expanding a
given program by introducing new facts, associated with argument conclusions
and warranted literals, respectively. Their associated logical properties are stud-
ied and contrasted with a traditional SLD-based Horn logic. We contend that this
analysis provides useful comparison criteria that can be extended and applied
to other argumentation frameworks. As we will show in this paper, expansion
operators in an argumentative framework like P-DeLP provide an interesting
counterpart to traditional consequence operators in logic programming [6]. Our
approach differs from such consequence operators as we want to analyze the role
of argument conclusions and warranted literals when represented as new weighed
facts in the context of object-level program clauses.

For the sake of simplicity we will restrict our analysis to the fragment of P-
DeLP built over classical propositions, hence based on classical possibilistic logic
[7] and not on PGL itself (which involves fuzzy propositions). The rest of the
paper is structured as follows: first in Section 2 we outline some fundamentals
of (non-monotonic) inference relationships. Section 3 summarizes the P-DeLP
framework. In Section 4 we characterize two expansion operators for capturing
the effect of expanding a P-DeLP program by adding argument conclusions
and warranted literals, as well as their emerging logical properties. Finally, in
Section 5 we discuss related work the most important conclusions that have been
obtained.

2 Non-monotonic Inference Relationships: fundamentals

In classical logic, inference rules allow us to determine whether a given wff γ
follows via “`” from a set Γ of wffs, where “`” is a consequence relationship
(satisfying idempotence, cut and monotonicity). As non-monotonic and defeasi-
ble logics evolved into a valid alternative to formalize commonsense reasoning a
similar concept was needed to capture the notion of logical consequence without
demanding some of these requirements (e.g. monotonicity). This led to the def-
inition of a more generic notion of inference in terms of inference relationships.
Given a set Γ of wffs in an arbitrary logical language L, we write Γ |∼ γ to denote
an inference relationship “|∼ ”, where γ is a (non-monotonic) consequence of Γ .
We define an inference operator C|∼ associated with an inference relationship,
with C|∼(Γ) = {γ | Γ |∼ γ}. Given an inference relationship “|∼ ” and a set Γ of
sentences, the following are called basic (or pure) properties associated with the
inference operator C|∼(Γ):

1. Inclusion (IN): Γ ⊆ C(Γ)
2. Idempotence (ID): C(Γ) = C(C(Γ))
3. Cut (CT): Γ ⊆ Φ ⊆ C(Γ) implies C(Φ) ⊆ C(Γ)
4. Cautious monotonicity (CM): Γ ⊆ Φ ⊆ C(Γ) implies C(Γ) ⊆ C(Φ).
5. Cumulativity (CU): γ ∈ C(Γ) implies φ ∈ C(Γ ∪{γ}) iff φ ∈ C(Γ), for any wffs

γ, φ ∈ L.
6. Monotonicity (MO): Γ ⊆ Φ implies C(Γ) ⊆ C(Φ)

These properties are called pure, since they can be applied to any language
L, and are abstractly defined for an arbitrary inference relationship “|∼ ”. Nev-
ertheless, other properties which link a classical inference operator Th with an
arbitrary inference relationship can be stated. Next we summarize the most im-
portant non-pure properties (for an in-depth discussion, see [8]).

1. Supraclassicality: Th(A) ⊆ C(A)
2. Left logical equivalence (LL): Th(A) = Th(B) implies C(A) = C(B)
3. Right weakening (RW): If x ⊃ y ∈ Th(A) and x ∈ C(A) then y ∈ C(A).4

4. Conjunction of conclusions (CC): If x ∈ C(A) and y ∈ C(A) then x∧y ∈ C(A).
5. Subclassical cumulativity (SC): If A ⊆ B ⊆ Th(A) then C(A) = C(B).
6. Left absorption (LA): Th(C(Γ)) = C(Γ).
7. Right absorption (RA): C(Th(Γ)) = C(Γ).
8. Rationality of negation (RN): if A|∼ z then either A∪{x}|∼ z or A∪{∼x}|∼ z.
9. Disjunctive rationality (DR): if A∪ {x∨y}|∼ z then A∪{x}|∼ z or A∪{y}|∼ z.

10. Rational monotonicity (RM): if A|∼ z then either A ∪ {x}|∼ z or A|∼ ∼x.

3 The P-DeLP programming language: fundamentals

The classical fragment of P-DeLP language L is defined from a set of ground
atoms (propositional variables) {p, q, . . .} together with the connectives {∼, ∧,
← }. The symbol ∼ stands for negation. A literal L ∈ L is a ground (fuzzy)
atom q or a negated ground (fuzzy) atom ∼q, where q is a ground (fuzzy)
propositional variable. A rule in L is a formula of the form Q ← L1 ∧ . . . ∧ Ln,
where Q,L1, . . . , Ln are literals in L. When n = 0, the formula Q ← is called a
fact and simply written as Q. The term goal will be used to refer to any literal
Q ∈ L.5 In the following, capital and lower case letters will denote literals and
atoms in L, resp.

Definition 1 (P-DeLP formulas). The set Wffs(L) of wffs in L are facts, rules
and goals built over the literals of L. A certainty-weighted clause in L, or simply
weighted clause, is a pair of the form (ϕ, α), where ϕ ∈ Wffs(L) and α ∈ [0, 1] expresses
a lower bound for the certainty of ϕ in terms of a necessity measure.

The original P-DeLP language [1] is based on Possibilistic Gödel Logic or
PGL [2], which is able to model both uncertainty and fuzziness and allows for

4 It should be noted that “⊃” stands for material implication, to be distinguished
from the symbol “ ← ” used in a logic programming setting.

5 Note that a conjunction of literals is not a valid goal.

a partial matching mechanism between fuzzy propositional variables. As men-
tioned before, in this paper, for simplicity and space reasons we will restrict
ourselves to fragment of P-DeLP built on non-fuzzy propositions, and hence
based on the necessity-valued classical propositional Possibilistic logic [7]. As a
consequence, possibilistic models are defined by possibility distributions on the
set of classical interpretations 6 and the proof method for our P-DeLP formulas,
written `, is defined by derivation based on the following generalized modus
ponens rule (GMP).

Generalized modus ponens (GMP):

(L0 ← L1 ∧ · · · ∧ Lk, γ)
(L1, β1), . . . , (Lk, βk)

(L0, min(γ, β1, . . . , βk))

which is a particular instance of the well-known possibilistic resolution rule, and
which provides the non-fuzzy fragment of P-DeLP with a complete calculus for
determining the maximum degree of possibilistic entailment for weighted literals.

From now on, and if not stated otherwise, we will simply use P-DeLP to
actually refer to the non-fuzzy fragment of the original P-DeLP.

3.1 Argumentation in P-DeLP

In P-DeLP we distinguish between certain and uncertain clauses. A clause (ϕ, α)
will be referred as certain if α = 1 and uncertain, otherwise. Moreover, a set of
clauses Γ will be deemed as contradictory, denoted Γ ` ⊥, if Γ ` (q, α) and
Γ ` (∼q, β), with α > 0 and β > 0, for some atom q in L7. A P-DeLP program
is a set of weighted rules and facts in L in which we distinguish certain from
uncertain information. As additional requirement, certain knowledge is required
to be non-contradictory. Formally:

Definition 2 (Program). A P-DeLP program P (or just program P) is a pair
(Π, ∆), where Π is a non-contradictory finite set of certain clauses, and ∆ is a finite
set of uncertain clauses. If P = (Π, ∆) is a program, we will also write PΠ (resp. P∆)
to identify the set of certain (resp. uncertain) clauses in P.

The following notion of argument, very similar to [9, 10], is an extension of
that in argumentation systems by considering the necessity degree which which
the argument supports a conclusion.

Definition 3 (Argument. Subargument). Given a program P = (Π, ∆), a set
A ⊆ ∆ of uncertain clauses is an argument for a goal Q with necessity degree α > 0,
denoted 〈A, Q, α〉, iff: (1) Π ∪ A ` (Q, α); (2) Π ∪ A is non contradictory; and (3)
There is no A1 ⊂ A such that Π ∪ A1 ` (Q, β), β > 0.

6 Although the connective ← in logic programming is different form the material
implication, e.g. p ← q is not the same as ∼ q ← ∼ p, regarding the possibilistic
semantics we assume here they share the same set interpretations.

7 Notice that this notion of contradiction corresponds to the case when the inconsis-
tency degree of Γ is strictly positive as defined in possibilistic logic.

Let 〈A, Q, α〉 and 〈S, R, β〉 be two arguments. We will say that 〈S, R, β〉 is a sub-
argument of 〈A, Q, α〉 iff S ⊆ A. Notice that the goal R may be a subgoal associated
with the goal Q in the argument A.

Note that from the definition of argument, it follows that on the basis of a P-
DeLP program P there may exist different arguments 〈A1, Q, α1〉, 〈A2, Q, α2〉,
. . . , 〈Ak, Q, αk〉 supporting a given goal Q, with (possibly) different necessity
degrees α1, α2, . . . , αk. Given a program P = (Π, ∆), we will write P |∼4〈A, Q, α〉
to denote that the argument 〈A, Q, α〉 can be obtained from P. Actually, the set
Arg(P) = {〈A, Q, α〉 | P|∼4〈A, Q, α〉} of arguments with respect to a program P
can be built by means of the following complete set of procedural rules:

1 Building arguments from facts (INTF)
If (Q, 1) ∈ Π, then 〈∅, Q, 1〉 ∈ Arg(P)
If (Q, α) ∈ ∆ then 〈{(Q, α)}, Q, α〉 ∈ Arg(P)

2 Building Arguments by GMP (MPA):
If 〈A1, L1, α1〉 〈A2, L2, α2〉 . . . 〈Ak, Lk, αk〉 ∈ Arg(P)

and Π ∪ {(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ)} ∪⋃k

i=1
Ai 6` ⊥

and (L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) ∈ ∆

then 〈⋃k

i=1
Ai ∪ {(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ)}, L0, β〉 ∈ Arg(P),

with β = min(α1, . . . , αk, γ).
3 Extending Arguments (EAR):

If 〈A, P, α〉 ∈ Arg(P), and Π ∪ {(P, α)} ` (Q, α) then 〈A, Q, α〉 ∈ Arg(P).

3.2 Computing Warrant in P-DeLP

As in most argumentation formalisms (see e.g. [11, 12]), in P-DeLP it can be
the case that there exist conflicting arguments. This is formalized next by the
notions of counterargument and defeat.

Definition 4 (Counterargument). Let P be a program, and let 〈A1, Q1, α1〉
and 〈A2, Q2, α2〉 be two arguments wrt P. We will say that 〈A1, Q1, α1〉 counterar-
gues 〈A2, Q2, α2〉 iff there exists a subargument (called disagreement subargument)
〈S, Q, β〉 of 〈A2, Q2, α2〉 such that Π ∪ {(Q1, α1), (Q, β)} is contradictory.

Defeat among arguments involves a preference criterion on conflicting argu-
ments, defined on the basis of necessity measures associated with arguments.

Definition 5 (Preference criterion º). Let P be a P-DeLP program, and let
〈A1, Q1, α1〉 be a counterargument for 〈A2, Q2, α2〉. We will say that 〈A1, Q1, α1〉 is
preferred over 〈A2, Q2, α2〉 (denoted 〈A1, Q1, α1〉 º 〈A2, Q2, α2〉) iff α1 ≥ α2. If it
is the case that α1 > α2, then we will say that 〈A1, Q1, α1〉 is strictly preferred over
〈A2, Q2, α2〉, denoted 〈A2, Q2, α2〉 Â 〈A1, Q1, α1〉. Otherwise, if α1 = α2 we will say
that both arguments are equi-preferred, denoted 〈A2, Q2, α2〉 ≈ 〈A1, Q1, α1〉.
Definition 6 (Defeat). Let P be a program, and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉
be two arguments in P. We will say that 〈A1, Q1, α1〉 defeats 〈A2, Q2, α2〉 (or equiva-
lently 〈A1, Q1, α1〉 is a defeater for 〈A2, Q2, α2〉) iff (1) Argument 〈A1, Q1, α1〉 coun-
terargues argument 〈A2, Q2, α2〉 with disagreement subargument 〈A, Q, α〉; and (2)
Either it holds that 〈A1, Q1, α1〉 Â 〈A, Q, α〉, in which case 〈A1, Q1, α1〉 will be called a
proper defeater for 〈A2, Q2, α2〉, or 〈A1, Q1, α1〉 ≈ 〈A, Q, α〉, in which case 〈A1, Q1, α1〉
will be called a blocking defeater for 〈A2, Q2, α2〉.

As in most argumentation systems [12, 11], P-DeLP relies on an exhaus-
tive dialectical analysis which allows to determine if a given argument is ul-
timately undefeated (or warranted) wrt a program P. An argumentation line
starting in an argument 〈A0, Q0, α0〉 is a sequence [〈A0, Q0, α0〉, 〈A1, Q1, α1〉,
. . . , 〈An, Qn, αn〉, . . .] that can be thought of as an exchange of arguments be-
tween two parties, a proponent (evenly-indexed arguments) and an opponent
(oddly-indexed arguments). In order to avoid fallacious reasoning, argumenta-
tion theory imposes additional constraints on such an argument exchange to be
considered rationally acceptable wrt a P-DeLP program P, namely:

1. Non-contradiction: given an argumentation line λ, the set of arguments of the
proponent (resp. opponent) should be non-contradictory wrt P. Non-contradiction
for a set of arguments is defined as follows: a set S =

⋃n

i=1
{〈Ai, Qi, αi〉} is con-

tradictory wrt P iff Π ∪⋃n

i=1
Ai is contradictory.

2. No circular argumentation: no argument 〈Aj , Qj , αj〉 in λ is a sub-argument
of an argument 〈Ai, Qi, αi〉 in λ, i < j.

3. Progressive argumentation: every blocking defeater 〈Ai, Qi, αi〉 in λ is de-
feated by a proper defeater 〈Ai+1, Qi+1, αi+1〉 in λ.

An argumentation line satisfying the above restrictions is called acceptable, and
can be proven to be finite. Given a program P and an argument 〈A0, Q0, α0〉,
the set of all acceptable argumentation lines starting in 〈A0, Q0, α0〉 accounts
for a whole dialectical analysis for 〈A0, Q0, α0〉 (i.e. all possible dialogues rooted
in 〈A0, Q0, α0〉, formalized as a dialectical tree, denoted T〈A0, Q0, α0〉). Nodes in a
dialectical tree T〈A0, Q0, α0〉 can be marked as undefeated and defeated nodes (U-
nodes and D-nodes, resp.). A dialectical tree will be marked as an and-or tree:
all leaves in T〈A0, Q0, α0〉 will be marked U-nodes (as they have no defeaters), and
every inner node is to be marked as D-node iff it has at least one U-node as a
child, and as U-node otherwise. An argument 〈A0, Q0, α0〉 is ultimately accepted
as valid (or warranted) iff the root of T〈A0, Q0, α0〉 is labelled as U-node.

Definition 7 (Warrant). Given a program P, and a goal Q, we will say that Q
is warranted wrt P with a necessity degree α iff there exists a warranted argument
〈A, Q, α〉. We will write P |∼

w
〈A, Q, α〉 to denote that 〈A, Q, α〉 is a warranted argument

on the basis of P.

4 Logical properties of argument and warrant in P-DeLP

Our aim is to study the behavior of P-DeLP programs in the context of non-
monotonic inference relationships. In order to do this, we will define different
inference operators associated with arguments and with warranted goals. As
stated in Section 1, we refer to such operators as expansion operators in order
to stress the fact that their output is associated with the effect of expanding a
given program P given as an input by adding new weighed facts. Formally:

Definition 8 (Expansion operators C` , C4 and Cw). Let P be a P-DeLP
program. We define the operators C` , C4 and Cw associated with P as follows:

C`(P) = P ∪ { (Q, 1) | P ` (Q, 1) }

C4(P) = P ∪ { (Q, α) | P |∼4〈A, Q, α〉, for some argument A
for a goal Q with necessity degree α }

Cw (P) = P ∪ { (Q, α) | P |∼
w
〈A, Q, α〉, for some argument A

for a goal Q with necessity degree α }
Operator C` computes the expansion of P by adding new certain facts (Q, 1)

whenever such facts can be derived in P via `.8 Operator C4 computes the ex-
pansion of P with new facts corresponding to defeasible knowledge derivable as
argument conclusions. C4(P) incorporates a new uncertain fact (Q, α) whenever
there exists an argument 〈A, Q, α〉 in P. Notice that C4 may contain contra-
dictory knowledge (i.e. it may be the case that two arguments 〈A1, Q, α〉 and
〈A2,∼Q, β〉 could be inferred from a given program P).9 Finally, operator Cw

computes a subset of C4 , namely the expansion of P including all new facts
which correspond to conclusions of warranted arguments in P.

Proposition 1. Operators C` , C4 and C
w

are well-defined (ie, given a P-DeLP
program P as input, the associated output is also a P-DeLP program P’). Be-
sides, they satisfy the following relationship: C`(P) ⊆ C

w
(P) ⊆ C4(P).

Proof. Given a P-DeLP program P, we want to determine that C`(P), C4(P) and
Cw (P) are also programs. From Def. 8, it is clear that all operators return syntacti-
cally valid programs as their output. From Def. 2, it remains to check that the strict
knowledge C`(P)Π (analogously for C4(P) and Cw (P)) is not a contradictory set of

P-DeLP clauses. Let us suppose that C`(P)Π is contradictory. By definition of C` ,
this is only possible if PΠ is contradictory, which cannot be the case, as P is a P-DeLP
program (absurd). Consequently, C`(P) is a P-DeLP program. The same line of rea-
soning applies for C4(P) and Cw (P). The inclusion relationship C`(P) ⊆ C4(P) holds
as it can be shown that P ` (Q, 1) iff P|∼4〈∅, Q, 1〉. Since every warranted argument is

an argument wrt P, a similar analysis applies to conclude that Cw (P) ⊆ C4(P).

4.1 Logical properties for C4

Proposition 2. The operator C4 satisfies inclusion and idempotence.

Proof. Inclusion holds trivially, as P ⊆ C4(P) ⊆ C4(C4(P)) by definition of C4 . Proof
for idempotence is not included for space reasons.

Monotonicity does not hold for C4 , as expected. As a counterexample con-
sider the program P = { (q, 1), (p ← q , 0.9) }. Then (p, 0.9) ∈ C4(P), as there
is an argument 〈A, p, 0.9〉 on the basis of P for concluding (p, 0.9), with A ={
(p ← q , 0.9) }. However, (p, 0.9) 6∈ C4(P∪{(∼p, 1)}) (as no argument for (p, 0.9)
could exist, as condition 2 in Def. 3 would be violated). Semi-monotonicity is an
interesting property for analyzing non-monotonic consequence relationships. It
is satisfied if all defeasible consequences from a given theory are preserved when
the theory is augmented with new defeasible information.
8 Operator C` defines in fact a consequence relationship, as it satisfies idempotence,

cut and monotonicity. It can be seen as the SLD Horn resolution counterpart in the
context of P-DeLP restricted to certain clauses.

9 For a given goal Q, we write ∼Q as an abbreviation to denote “∼q” if Q ≡ q and
“q” if Q ≡ ∼q.

Proposition 3. The operator C4 satisfies semi-monotonicity when new defea-
sible information is added, i.e. C4(P1) ⊆ C4(P1 ∪ P2), when PΠ

2 = ∅.

Proof. Follows directly from the structure of the inference rules for |∼4 . Suppose P1

|∼4〈A, Q, α〉, and consider a program P2 such that PΠ
2 = ∅. Clearly, 〈A, Q, α〉 can be

derived from P1∪P2 by applying the same sequence of steps as in P1|∼4〈A, Q, α〉, since

all preconditions in inference rules are defined wrt PΠ
1 , the set of strict knowledge in

P1, and by hypothesis, (P1 ∪ P2)
Π = PΠ

1 .

Proposition 4. The operator C4 satisfies cumulativity, i.e. γ ∈ C4(Γ) implies
φ ∈ C4(Γ ∪ {γ}) iff φ ∈ C4(Γ).

Proof. (Sketch) Without loss of generality, we can assume γ = (Q, α) is not in Γ
(otherwise the proof is straightforward). By hypothesis, (Q, α) ∈ C4(Γ) and there is

a sequence sQ
1 , sQ

2 , . . . , sQ
t of application of inference rules in { INTF, MPA, EAR }

such that Γ |∼4〈A1, Q, α〉. Let us assume now that (R, β) ∈ C4(Γ ∪ {(Q, α)}). This

means that there is a sequence r1, r2, . . . , rn of application of inference rules as before
such that Γ |∼4〈A2, R, β〉. Suppose now that 〈A2, R, β〉 does not include 〈A1, Q, α〉 as

a subargument. This happens iff from the structure of inference rules for |∼4 , (Q, α)

will not be required as intermediate step in the proof of (R, β) iff (R, β) ∈ C4(Γ).
Suppose now that 〈A2, R, β〉 does include 〈A1, Q, α〉 as a subargument. This happens
iff in the sequence r1, r2, . . . , rn we have that ri+k = sQ

i , for i = 1 . . . t, for some
1 ≤ k ≤ n. But from the initial hypothesis this sequence can be built from Γ alone.
Hence Γ |∼4〈A2, R, β〉 or equivalently (R, β) ∈ C4(Γ).

Note that the property of right weakening cannot be considered (in a strict
sense) in P-DeLP, since the underlying logic does not allow the application of
the deduction theorem. Therefore, wffs of the form (x ← y , α) cannot be derived.
However, an alternative approach can be intended, introducing a new property
in which right weakening is restricted to Horn-like clauses:

Proposition 5. The operator C4 satisfies (Horn) supraclassicality wrt C` (i.e.
C`(P) ⊆ C4(P)), and (Horn) right weakening, (i.e. if (Y, α) ∈ C4(P) and
(X ← Y , 1) ∈ C`(P), then (X, α) ∈ C4(P)).

Proof. Supraclassicality follows from Prop. 1. For the case of right weakening, let
us suppose (Y, α) ∈ C4(P), i.e. P |∼4〈A1, Y, α〉, for some argument 〈A1, Y, α〉. If

(X ← Y , 1) ∈ C`(P), then necessarily (X ← Y , 1) ∈ PΠ (by def. of C`). From
(X ← Y , 1) ∈ P and P |∼4〈A1, Y, α〉, by applying inference rule EAR we get 〈A1, X, α〉.

Proposition 6. The operator C4 satisfies subclassical cumulativity, i.e. P1 ⊆
P2 ⊆ C`(P1) implies C4(P1) = C4(P2).

Most non-pure logical properties for C4 do not hold. In particular, C4 does
not satisfy the properties of (LL) left-logical equivalence; (CC) conjunction of
conclusions; (LA) left absorption; (RA) right absorption; (RN) rational negation;
(RM) rational monotonicity; (DR) disjunctive rationality, as shown next.

LL: Given two programs P1 and P2, C`(P1) = C`(P2) does not imply C4(P1) =
C4(P2). Consider P1 = { (y ← , 1) } and P2 = P1 ∪ { (x ← y , 0.9) }.

CC: Arguments supporting conjunctions of conclusions cannot be expressed in P-DeLP
language, as goals are restricted to literals.

LA: Consider P = {(Q, α)}, where Q is a literal, α < 1. Then C`(C4(P)) = C`({(Q, α)})
= ∅ 6= C4(P).

RA: Consider the same counterexample given for LA. Analogously, C4(C`(P)) = C4(∅)
= ∅ 6= C4(P).

RN: Consider P1 = { (∼p ← x , 1), (∼p ← ∼x , 1), (r ← , 1), (z ← p, 1), (p ← r , 0.9) }.
Then P1 |∼4〈A1, z, 0.9〉, with A1 = { (p ← r , 0.9) } However, P1 ∪ { (x ← , 1) }
6 |∼4 〈A1, z, 0.9〉, and P1 ∪ { (∼x ← , 1) } 6 |∼4 〈A1, z, 0.9〉.

RM: Consider the same counterexample as given for RN. Then P1 |∼4〈A1, z, 0.9〉, but it

is not the case that P1 ∪ { (x ← , 1) } |∼4 〈A1, z, 0.9〉 nor P1 |∼4 (∼x ← , 1).

DR: Clearly, C4 does not satisfy property (e), as disjunctions cannot be expressed as
wffs in the P-DeLP object language.

4.2 Logical properties for C
w

Next we will analyze some relevant logical properties for Cw . Notice that by
definition Cw satisfies inclusion.

Proposition 7. The operator Cw satisfies inclusion.

Monotonicity does not hold, as can be seen from the counterexample used
for monotonicity in C4 ; in that case, (q, 0.9) ∈ Cw(P), but (q, 0.9) 6∈ Cw(P ∪
{(∼p, 1)}). Semi-monotonicity does not hold either for Cw , as adding new de-
feasible clauses cannot invalidate already derivable arguments, but it can enable
new ones that were not present before, thus modifying the dialectical relation-
ships among arguments. Arguments that were warranted may therefore no longer
keep that epistemic status. Consider a variant of the previous counterexample:
let P = { (q, 1), (p ← q , 0.9) }. Then (p, 0.9) ∈ Cw(P), as there is an argu-
ment 〈A, p, 0.9〉 on the basis of P. However, (p, 0.9) 6∈ Cw(P ∪ {(∼p, 0.95)}), as
〈A, p, 0.9〉 is defeated by 〈B,∼p, 0.95〉, with B ={(∼p, 0.95)}. There are no more
arguments to consider, and hence 〈A, p, 0.9〉 is not warranted. From our current
analysis cumulativity and idempotence seem to hold for the Cw operator: we
have not found any counterexample showing that these two properties do not
hold, and we are currently studying the formulation of a proof. In comparison
with C4 such a formal analysis is much more complex, as dialectical trees are
not structures that can be recursively defined (notice that subtrees of dialectical
trees are not dialectical trees). The reason for this is given by the different dialec-
tical constraints that have to been taken into account (see previous discussion
on acceptability in argumentation lines in Section 3).

Conjecture 1 The operator Cw satisfies cumulativity i.e. P1 ⊆ P2 ⊆ Cw(P1)
implies Cw(P1) = Cw(P2).

Conjecture 2 The operator Cw satisfies idempotence i.e. Cw(P) = Cw(Cw(P)).

Property C4 Cw Comments

Inclusion ◦ ◦ Prop. 2 and 7.

Idempotence ◦ ◦? Prop. 2 & Conj. 2.

Cumulativity ◦ ◦? Prop. 4 & Conj. 1.

Monotonicity × ×
Semi-monotonicity ◦ × Prop. 3 and 7.

(Horn) Supraclass. ◦ ◦ Prop. 5 and 8

Left-logical equiv. × ×
Horn Right Weak. ◦ ◦ Prop. 5 and 8

Property C4 Cw Comments

Conj. concl. × ×
Subclass. cumm. ◦ ◦ Prop. 6

and 9.

Left absorption × ×
Right absorption × ×
Rational Negation × ×
Disj. Rationality × ×
Rational Monoton. × ×

Fig. 1. Logical properties in P-DeLP: summary

Proposition 8. The operator Cw satisfies (Horn) supraclassicality wrt C` (i.e.
C`(P) ⊆ C

w
(P)), and (Horn) right weakening, (i.e. if (Y, α) ∈ C

w
(P) and

(X ← Y , 1) ∈ C`(P), then (X, α) ∈ Cw(P)).

Proof. (Sketch) Supraclassicality follows from Prop. 1. For the case of right weakening,
let us suppose (Y, α) ∈ Cw (P), i.e. P |∼

w
〈A1, Y, α〉, for some argument 〈A1, Y, α〉. If

(X ← Y , 1) ∈ C`(P), then necessarily (X ← Y , 1) ∈ P (by def. of C`). By Prop. 5,
if P |∼4〈A1, X, α〉. Clearly argument 〈A1, X, α〉 and 〈A1, Y, α〉 have the same set of

associated defeaters. Hence if 〈A1, Y, α〉 is warranted, then 〈A1, X, α〉 also is.

Proposition 9. The operator C4 satisfies subclassical cumulativity, i.e. P1 ⊆
P2 ⊆ C`(P1) implies Cw(P1) = Cw(P2).

Proof. Not included for space reasons.

As for C4 , most non-pure logical properties for Cw do not hold. In particular,
Cwdoes not satisfy the properties of LL, CC, LA, RA, RN, RM and DR. In all
cases this is based on the existence of counterexamples following the same line
of reasoning as for C4 .

4.3 Discussion

Figure 1 summarizes the logical properties discussed before. When analyzing ar-
gumentative inference under the operator C4 , idempotence shows us that adding
argument conclusions as new facts to a given program does not add any new in-
ference capabilities. Cumulativity shows us that any argument obtained from a
program P can be kept as an intermediate proof (lemma) to be used in building
more complex arguments. (Horn) supraclassicality indicates that every conclu-
sion that follows via traditional SLD inference (involving only certain clauses)
can be considered as a special form of argument (namely, an empty argument),
whereas Horn right weakening tells us that certain rules in P-DeLP preserve
the usual semantics for Horn rules (the existence of a certain rule X ← Y
causes that every argument concluding Y is also an argument for X). Comput-
ing warrant also can be better understood in the light of the logical properties

for C
w
. From Horn supraclassicality it follows that every conclusion obtained

from certain clauses is a particular case of warranted literal, whereas Horn right
weakening indicates that non-defeasible rules behave as such in the meta-level
(a strong rule (Y ← X , 1) ensures that every warranted argument A for (X, α)
allow us to ensure that (Y, α) is also warranted. Cumulativity for C

w
is specially

interesting, as we will further discuss in the next Section.

5 Related work. Conclusions

Research in logical properties for defeasible argumentation can be traced back to
Benferhat et al. [9, 10] and Vreeswijk [13]. In the context of his abstract argumen-
tation systems, Vreeswijk showed that many logical properties for non-monotonic
inference relationships turned out to be counter-intuitive for argument-based sys-
tems. Benferhat et al. [9] were the first who studied argumentative inference in
uncertain and inconsistent knowledge bases. They defined an argumentative con-
sequence relationship `A taking into account the existence of arguments favoring
a given conclusion against the absence of arguments in favor of its contrary. In
contrast, the |∼4 relationship proposed in this paper takes into account any pos-
sible argument derivable from the program. In [9, 10] the authors also extend
the argumentative relation `A to prioritized knowledge bases, assessing weights
to conclusions on the basis of the `π-entailment relationship from possibilistic
logic [7]. A direct comparison to our |∼

w
relationship is not easy since we are

using a logic programming framework and not general propositional logic, but
roughly speaking while `π takes into account the inconsistency degree associated
with the whole knowledge base, our logic programming frame allows us to per-
form a dialectical analysis restricted only to conflicting arguments related with
the query being solved. More recently there have been generic approaches con-
necting defeasible reasoning and possibilistic logic (e.g.[14]). Preference-based
approaches to argumentation have been also developed, many of them oriented
towards formalizing conflicting desires in multiagent systems [15, 16]. Part of our
current work involves studying the formalization of expansion operators for such
contexts.

In [11] some examples are informally presented to show that argumentation
systems should assign facts a special status, and therefore should not be cumula-
tive. In the particular case of cumulativity and idempotence we have conjectured
that they hold in the context of P-DeLP. Should such conjectures be true, this
would provide an interesting result in comparison with [11], as it would mean
that warranted conclusions (Q,α) in a given program P could be introduced as
new uncertain facts, speeding up computation of new future queries. However,
such facts would not have the same epistemic status as discussed in [11], where
warranted conclusions are analyzed as certain facts for the study of cumulativity.

We have shown that P-DeLP provides a useful framework for making a formal
analysis of logical properties in defeasible argumentation under uncertainty. We
contend that a formal analysis of defeasible consequence is mandatory to get an
in-depth understanding of the behavior of argumentation frameworks. Expansion

operators provide a natural tool for characterizing that behavior, as well as useful
criteria when developing and implementing new argumentation frameworks or
assessing their expressive power.
Acknowledgments: We want to thank anonymous reviewers for their useful comments.

This work was supported by Spanish Projects TIC2003-00950, TIN2004-07933-C03-

01/03, TIN2004-07933-C03-03, by Ramón y Cajal Program (MCyT, Spain) and by

CONICET (Argentina).

References

1. Chesñevar, C.I., Simari, G., Alsinet, T., Godo, L.: A Logic Programming Frame-
work for Possibilistic Argumentation with Vague Knowledge. In: Proc. Intl. Conf.
in Uncertainty in Artificial Intelligence (UAI 2004). Banff, Canada. (2004) 76–84

2. Alsinet, T., Godo, L.: A complete calculus for possibilistic logic programming with
fuzzy propositional variables. In: Proc. of the UAI-2000 Conference. (2000) 1–10

3. Alsinet, T., Godo, L.: A proof procedure for possibilistic logic programming with
fuzzy constants. In: Proc. of the ECSQARU-2001 Conference. (2001) 760–771

4. Chesñevar, C., Maguitman, A., Simari, G.: A first approach to argument-based
recommender systems based on defeasible logic programming. In: Proc. 10th Intl.
Workshop on Non-Monotonic Reasoning. Whistler, Canada. (2004) 109–117

5. Chesñevar, C., Maguitman, A.: An Argumentative Approach to Assessing Natural
Language Usage based on the Web Corpus. In: Proc. of the ECAI-2004 Conference.
Valencia, Spain. (2004) 581–585

6. Lifschitz, V.: Foundations of logic programming. In: Principles of Knowledge
Representation. CSLI Publications (1996) 69–127

7. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In D.Gabbay, C.Hogger,
J.Robinson, eds.: Handbook of Logic in Art. Int. and Logic Prog. (Nonmonotonic
Reasoning and Uncertain Reasoning). Oxford Univ. Press (1994) 439–513

8. Makinson, D.: General patterns in nonmonotonic reasoning. In D.Gabbay,
C.Hogger, J.Robinson, eds.: Handbook of Logic in Art. Int. and Logic Prog. Volume
Nonmonotonic and Uncertain Reasoning. Oxford University Press (1994) 35–110

9. Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and
inconsistent knowledge bases. In: Proc. of UAI. (1993) 411–419

10. Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling
of inconsistent knowledge bases: A comparative study. part ii: The prioritized case.
In Orlowska, E., ed.: Logic at work. Volume 24. Physica-Verlag , Heidelberg (1998)
473–511

11. Prakken, H., Vreeswijk, G.: Logical Systems for Defeasible Argumentation. In
Gabbay, D., F.Guenther, eds.: Handbook of Phil. Logic. Kluwer (2002) 219–318

12. Chesñevar, C., Maguitman, A., Loui, R.: Logical Models of Argument. ACM
Computing Surveys 32 (2000) 337–383

13. Vreeswijk, G.A.: Studies in Defeasible Argumentation. PhD thesis, Vrije University,
Amsterdam (Holanda) (1993)

14. Benferhat, S., Dubois, D., Prade, H.: The possibilistic handling of irrelevance in
exception-tolerant reasoning. Annals of Math. and AI 35 (2002) 29–61

15. Amgoud, L.: A formal framework for handling conflicting desires. In: Proc. of the
ECSQARU-2003 Conference. (2003) 552–563

16. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argu-
mentation frameworks. Journal of Automated Reasoning 29 (2002) 125–169

