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Abstract. Possibilistic Defeasible Logic Programming (P-DeLP) is a logic pro-
gramming language which combines features from argumentation theory and logic
programming, incorporating as well the treatment of possibilistic uncertainty and
fuzzy knowledge at object-language level. Defeasible argumentation in general and
P-DeLP in particular provide a way of modelling non-monotonic inference. From
a logical viewpoint, capturing defeasible inference relationships for modelling ar-
gument and warrant is particularly important, as well as the study of their logical
properties. This paper analyzes a non-monotonic operator for P-DeLP which mod-
els the expansion of a given program by adding new weighed facts associated
with warranted literals. Different logical properties are studied and contrasted with
a traditional SLD-based Horn logic, providing useful comparison criteria that can
be extended and applied to other argumentation frameworks.
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1. Introduction and motivations

Possibilistic Defeasible Logic Programming (P-DeLP) [10] is a logic programming lan-
guage which combines features from argumentation theory and logic programming, in-
corporating as well the treatment of possibilistic uncertainty and fuzzy knowledge at
object-language level. These knowledge representation features are formalized on the
basis of PGL [1,2], a possibilistic logic based on Gddel fuzzy logic. In PGL formulas are
built over fuzzy propositional variables and the certainty degree of formulas is expressed
with a necessity measure. In a logic programming setting, the proof method for PGL
is based on a complete calculus for determining the maximum degree of possibilistic
entailment of a fuzzy goal. The top-down proof procedure of P-DeLP has already been
integrated in a number of real-world applications such as intelligent web search [8] and
natural language processing [6], among others.

Formalizing argument-based reasoning by means of suitable inference operators of-
fers a useful tool. On the one hand, from a theoretical viewpoint logical properties of
defeasible argumentation can be easier studied with such operators at hand. On the other

1This paper extends previous research on argument-based inference operators presented in [9].
2Correspondence to: C. Chesfievar. Department of Computer Science, University of Lleida. C/Jaume Il, 69.
Lleida, Spain. Tel.: +34 973 70 2718; Fax: +34 973 70 2702; E-mail: cic@eps.udl.es.



hand, actual implementations of argumentation systems could benefit from such logical
properties for more efficient computation in the context of real-world applications. This
paper analyzes a hon-monotoeipansion operatdior P-DeLP, intended for modelling

the effect of expanding a given program by introducing new facts, associated with war-
ranted literals. The associated logical properties are studied and contrasted with a tra-
ditional SLD-based Horn logic. We contend that this analysis provides useful compari-
son criteria that can be extended and applied to other argumentation frameworks. As we
will show in this paper, expansion operators in an argumentative framework like P-DeLP
provide an interesting counterpart to traditional consequence operators in logic program-
ming [13]. Our approach differs from such consequence operators as we want to ana-
lyze the role of warranted literals when represented as new weighed facts in the context
of object-level program clauses. For the sake of simplicity we will restrict our analysis
to the fragment of P-DeLP built over classical propositions, hence basethssical
possibilistic logic [11] and not on PGL itself (which involves fuzzy propositions).

2. The P-DeLP programming language

The classical fragment of P-DelLP languafiés defined from a set of ground atoms
(propositional variables)p, ¢, . . .} together with the connectives{ A, < }. The sym-
bol ~ stands fonegation A literal L € L is a ground (fuzzy) atom or a negated ground
(fuzzy) atom~gq, whereq is a ground (fuzzy) propositional variable.réle in £ is a
formula of the formQ «— L1 A ... A L, whereQ, L+, ..., L, are literals inL. When

n = 0, the formula@ < is called afactand simply written ag). The termgoal will be
used to refer to any litera) € £.! In the following, capital and lower case letters will
denote literals and atoms ify resp.

Definition 1 (P-DeLP formulas) The set WffsZ) of wifs in£ are facts rulesand goalsbuilt

over the literals ofC. A certainty-weightedlause inZ, or simplyweighted clausgs a pair of the
form (p, o), wherep € Wffg L) anda € [0, 1] expresses a lower bound for the certaintygoh

terms of a necessity measure.

The original P-DeLP language [10] is based on Possibilistic Gédel Logic or PGL [1],
which is able to model both uncertainty and fuzziness and allows for a partial matching
mechanism between fuzzy propositional variables. In this paper for simplicity and space
reasons we will restrict ourselves to fragment of P-DeLP built on non-fuzzy propositions,
and hence based on the necessity-valued classical propositional Possibilistic logic [11].
As a consequence, possibilistic models are defined by possibility distributions on the set
of classical interpretatiorsand the proof method for our P-DeLP formulas, written
is defined by derivation based on the following generalized modus ponens rule (GMP):

(Lo <= L1 A-+- A Lg,7)
(L17ﬁ1)7 ey (Lkvﬁk)
(Lo, min(y, B1, .. ., Bk))

INote that a conjunction of literals is not a valid goal.

2Although the connective— in logic programming is different form the material implication, eng— ¢
is not the same as ¢ < ~ p, regarding the possibilistic semantics we assume here they share the same set
interpretations.



which is a particular instance of the well-known possibilistic resolution rule, and
which provides thenon-fuzzyfragment of P-DeLP with a complete calculus for deter-
mining the maximum degree of possibilistic entailment for weighted literals.

In P-DeLP we distinguish betweerertain and uncertainclauses. A clausép, «)
will be referred as certain ifi = 1 and uncertain, otherwise. Moreover, a set of clauses
I" will be deemed asontradictory denoted™ - L, if T' F (¢, «) andT + (~g¢, 3), with
a > 0andj > 0, for some atony in £3. A P-DeLP program is a set of weighted rules
and facts inC in which we distinguish certain from uncertain information. As additional
requirement, certain knowledge is required to be non-contradictory. Formally:

Definition 2 (Program) A P-DeLP prograniP (or just program?P) is a pair (I, A), wherell

is a non-contradictory finite set of certain clauses, ahds a finite set of uncertain clauses. If
P = (II, A) is a program, we will also writé®™ (resp.P2) to identify the set of certain (resp.
uncertain) clauses ifP.

The following notion of argument is based on the one presented in [17] (and sim-
ilar to [4,3]), and considers the necessity degree with which the argument supports a
conclusion. The procedural mechanism for computing arguments can be found in [9].

Definition 3 (Argument. Subargument) Given a programP = (II, A), a setA C A of
uncertain clauses is aargumentor a goal Q with necessity degree > 0, denoted(A, Q, o),
ifft (1) IIUAF (Q,a); (2) II U A is non contradictory; and (3) There is nd; C A such
thatllu A; - (Q,3), 8 > 0. Let (A4, Q, ) and (S, R, 3) be two arguments. We will say that
(S, R, 3) is asubargumenbf (A, Q, a) iff S C A. Notice that the goaR may be a subgoal
associated with the god) in the argument4.*

As in most argumentation formalisms (see e.g. [16,7]), in P-DeLP it can be the case
that there existonflictingarguments. Defeat among conflicting arguments involves a
preference criteriordefined on the basis of necessity measures associated with argu-
ments.

Definition 4 (Counterargument) LetP be a program, and letA:, Q1,a1) and{Az, Q2, az)
be two arguments wrP. We will say that(.4:, Q1, a1) counterargues Az, Q2, a2) iff there
exists a subargument (calladisagreement subargumgntS, Q, 3) of (Az, Q2,a2) such that
ITU {(Q1, 1), (Q, B)} is contradictory.

Definition 5 (Preference criterion =) LetP be a P-DeLP program, and Iét4;, Q1, 1) be
a counterargument fof A, Q2, az). We will say that A1, Q1, a1 ) is preferrecover(As, Q2, a2)
(denoted A1, Q1, a1) = (A2, Q2, a2)) iff 1 > o Ifitis the case thatv; > a2, then we will say
that (A1, Q1, an ) is strictly preferredover (As, Q2, az), denoted Az, Q2, a2) = (A1, Q1, a1).
Otherwise, ifoe; = a2 we will say that both arguments aegjui-preferreddenoted( Az, Q2, a2)
~ <.A17 Q1, CM1>.

Definition 6 (Defeat) Let? be a program, and let4:, Q1, a1) and{Az, Q2, a2 be two argu-
ments irP. We will say that A, Q1, a1 ) defeats( A2, Q2, a2) (or equivalently( A, Q1, 1) is

SNotice that this notion of contradiction corresponds to the case when the inconsistency defree of
strictly positive as defined in possibilistic logic.

“Note that from the definition of argument, it follows that on the basis of a P-DelP progrémere may
exist different argument§A, Q, a1), (A2, Q, a2), ..., (Ag, Q, ;) supporting a given god), with (pos-
sibly) different necessity degrees, az, . . . , ag.



adefeateffor (Az, Q2, a2)) iff (1) Argument{A:, Q1, a1 ) counterargues argumeiids, Q2, az2)
with disagreement subargumet, Q, «); and (2) Either it holds that A1, Q1, a1) = (A, Q, o),
in which case(A1, @1, 1) will be called aproper defeatefior (A2, Q2, az), or (A1, Q1,01) =
(A, Q, o), in which casg.A1, Q1, 1) will be called ablocking defeatefor (A2, Q2, a2).

As in most argumentation systems [7,16], P-DeLP relies on an exhaustive dialectical
analysis which allows to determine if a given argumentlignatelyundefeated (owar-
ranted wrt a progranfP. An argumentation linestarting in an argumentd,, Qo, «p) is
asequence g, Qo, o), (A1, Q1,a1), ..., {An, Qn, ay), ...] that can be thought of as
an exchange of arguments between two partipspponentevenly-indexed arguments)
and anopponent(oddly-indexed arguments). In order to avéédlaciousreasoning, ar-
gumentation theory imposes additional constraints on such an argument exchange to be
considered rationally acceptable wrt a P-DelLP progl”amamely:

1. Non-contradiction: given an argumentation link, the set of arguments of the proponent (resp. op-
ponent) should b&on-contradictorywrt . Non-contradiction for a set of arguments is defined as
follows: a sets = J7"_, {(Ai, Qi, a:)} is contradictorywrt P iff TTU ( J"_, A; is contradictory.

2. No circular argumentation: no argument(4;, Q;, a;) in X is a sub-argument of an argument
<.A1', Qi, Oéi> in\i<j.

3. Progressive argumentation:every blocking defeatef4;, Q;, ;) in A is defeated by a proper de-
feater(A;1+1, Qitr1,0u4+1) IN A

An argumentation line satisfying the above restrictions is calts®ptableand can
be proven to be finite. Given a prograPhand an argumentdg, Qo, ag), the set of all
acceptable argumentation lines startind.iy, Qo, ap) accounts for a whole dialectical
analysis for{A4g, Qo, o) (i.e. all possible dialogues rooted {ily, Qo, ), formalized
as adialectical treg denoted 4, . o,))- NOdes in a dialectical tre€ 4, ¢, ay) €aN
be marked asndefeatednddefeatechodes (U-nodes and D-nodes, resp.). A dialectical
tree will be marked as anND-OR tree: all leaves i, 4, o, o,) Will be marked U-
nodes (as they have no defeaters), and every inner node is to be maiawedsiff it
has at least one U-node as a child, antlasodeotherwise. An argumen{td,, Qo, o)
is ultimately accepted agarrantediff the root °f7<Ao,Qo,ao> is aU-node

Definition 7 (Warrant) Given a progranfP, and a goalQ@, we will say thatQ is warranted
wrt P with a necessity degreeiff there exists a warranted argumefitl, Q, o). We will write P
b(A, Q, «) to denote that A, @, o) is a warranted argument on the basis/@f

3. Logical properties of warrant in P-DeLP

Our aim is to study the behavior of P-DeLP programs in the context of non-monotonic in-
ference relationships. In order to do this, we will define an inference operator associated
with warranted goals. Formally:

Definition 8 (Expansion operatorsC,_ and C') Let P be a P-DeLP program. We define
the operatorC,. andC, associated witlP as follows: (1)C,_(P) =P U { (Q,1) | P+ (Q,1)
1@ C,(P)=PU{(Q,a)|P A Q,«a),for some argumentl for a goal@ with necessity
degreex }.



OperatorC, computes the expansion Bfby adding new certain facts), 1) when-
ever such facts can be derived7hvia I-.5> OperatorC, computes the expansion &f
including all new facts which correspond to conclusions of warranted argumepts in

Proposition 9 OperatorsC,. andC,, are well-defined (ie, given a P-DeLP prografhas input,

the associated output is also a P-DelLP progr@). Besides, they satisfy the following relation-
ship:C_(P) C C, (P).°

Next we will summarize the main properties for non-monotonic inference relation-
ships for a given inference relationship* and a sefl” of sentences. We will writ&'h
to denote a classical inference operator. For an in-depth treatment see [14].

1. Inclusion (IN): T" C C(T")

2. ldempotence (ID} C(I") = C(C(T"))

3. Cumulativity (CU) : v € C(T") implies¢ € C(T' U {~}) iff ¢ € C(T"), for any wifs~, ¢ € L.
4. Monotonicity (MO) : T" C ® impliesC(T") C C(®)

5. Supraclassicality Th(A) C C(A)

6. Left logical equivalence (LL): Th(A) = Th(B) impliesC(A) = C(B)

7. Right weakening (RW): If z D y € Th(A) andz € C(A) theny € C(A).”

8. Conjunction of conclusions (CC) If z € C(A) andy € C(A) thenz Ay € C(A).

9. Subclassical cumulativity (SC)If A C B C Th(A) thenC(A) = C(B).
10. Left absorption (LA) : Th(C(T')) = C(T").
11. Right absorption (RA): C(Th(T")) = C(T").
12. Rationality of negation (RN): if Ap z then eithetA U {z}fv zor AU {~a}}~ 2.
13. Disjunctive rationality (DR) : if AU {x V y}r zthenAU {z}r zor AU {y}t =.
14. Rational monotonicity (RM): if Ap z then eithetA U {z}h z or Ap ~a.

In what follows we will analyze some relevant logical propertiesdor. Notice that
by definitionC , satisfies inclusion.

Proposition 10 The operatoiC,, satisfies inclusion.

Proposition 11 The operatorC,, satisfies (Horn) supraclassicality wi, (i.e. C_(P) C
C,(P)).

Proposition 12 The operatorC,, satisfies subclassical cumulativitye. P1 C P2 C C_ (P1)
impliesC,, (P1) = C,, (P2).

Monotonicity does not hold fo€’, , as expected. As a counterexample consider the
programP ={ (¢,1), (p < ¢,0.9) }. Then(p,0.9) € C_(P), as there is an undefeated
argument A, p,0.9) on the basis o for concluding(p, 0.9), with A ={ (p < ¢,0.9)

}. However, (p,0.9) ¢ C, (P U {(~p,1)}) (as no argument fofp, 0.9) could exist, as
condition 2 in Def. 3 would be violated). Moreover, cummulativity, idempotence and
right-weakening do not hold fa', , as shown in the following examples.

Example 1 Operator C,,does not satisfy idempotence. Consider progr®m ... given in
Fig. 1. Note thaty ¢ C, (Psampic): there is an argumentA, ¢,0.7), with A ={ (¢ — 2,0.7),
(z < p,0.7), (p,0.7) } supporting (g, 0.7). Argument(A, ¢,0.7) is defeated by, ~q,0.8),

SOperatorC, defines in fact a consequence relationship, as it satisfies idempotence, cut and monotonicity.
It can be seen as the SLD Horn resolution counterpart in the context of P-DeLP restricted to certain clauses.
8Proofs for propositions 9, 10 and 11 can be found in [9].
71t should be noted that™” stands for material implication, to be distinguished from the symbet*”
used in a logic programming setting.



1) (~ye—=p,~r1) (5) (¢ < 2,0.7)
(2 (y,1) (6) (2 + p,0.7)
3) (p,0.7) (M (~q—r,08)
4 (r,0.8) (8) (~7,0.9)

Figure 1. ProgramPg ., 1. (see examples 1 and 2)

with B ={ (~q < 7,0.8), (r,0.8) }. There is a third argumen{C, ~r,0.9), withC ={ (~r,0.9)

}. Even though this argument defedt8, ~¢, 0.8), it cannot be introduced as a defeater in the
above analysis, as it would be in conflict with argumg#t ¢, 0.7), violating the non-contradiction
consistency constraint in argumentation lines (sifeey, 1) and (y,0.7) would follow from
Pitmpie U AU B, wherePl,, . stands for the certain knowledge #ampic. The set of all
warranted literals supported bPsqmpie is W ={ (p,0.7), (2,0.7), (~7,0.9) }. Consider now
the programP’ = Psampie UW. Let us analyze whetheris warranted or not wrtP’. There is an
argument{A’, ¢,0.7), with A’ = {(g < 2,0.7)}, which is defeated b{3, ~q,0.8) (as before).
This defeater is defeated Kg', ~r,0.9), withC’ = (). There are no more arguments to consider,
and therefore(q, 0.7) is warranted. Hence € C, (P') = C,, (C,, (Psampie)), and as shown
aboveq & C, (Psampie). ThereforeC', does not satisfy idempotence.

Example 2 Operator C, does not satisfy cummulativity. We must show that there exists a
weighed literal for some prograr®® such that if(Q,«) € C, (P), then(R,8) € C, (P U
{(Q,)}) does not imply(R, 3) € C,(P). Consider programPs.mpie in Fig. 1. As shown
in Example 1,(2,0.7) € C, (Psampie), and (¢,0.7) € C, (Psampie U {(2,0.7)}). However,
(¢,0.7) € C, (Psampie). Hence cummulativity does not hold fof, .

Example 3 OperatorC,, does not satisfy right weakening. Consider progrBga,,. in Fig. 1.
Note that(p,0.7) € C, (Psampie) and(~r,0.9) € C, (Psampie). Besides(~y «— p,~r,1) €
P.E,,mple. However, the conclusion of this certain rule i®t warranted, i.e. (~y,0.7) ¢
C (Psampie), since (y,1) € Pfflmple and thus there exists no argument with conclusion
(~y,0.7) (as it would violate condition 2 in Def. 3).

OperatorC , does not satisfy the properties of LL, CC, LA, RA, RN, RM and DR.
In all cases this is based on the impossibility of computing arguments satisfying these
properties. Suitable counterexamples can be found in [9].

4. Discussion. Related work

Research in logical properties for defeasible argumentation can be traced back to Benfer-
hatet al. [4,3] and Vreeswijk [18]. In the context of his abstract argumentation systems,
Vreeswijk showed that many logical properties for non-monotonic inference relation-
ships turned out to be counter-intuitive for argument-based systems. Benfiedhaj4]
were the first who studied argumentative inference in uncertain and inconsistent knowl-
edge bases. They defined an argumentative consequence relattondhigng into ac-
count the existence of arguments favoring a given conclusion against the absence of argu-
ments in favor of its contrary. In contrast, therelationship proposed in this paper takes
into account thevholedialectical analysis for arguments derivable from the program for
any given goal.

In [4,3] the authors also extend the argumentative relatigrio prioritized knowl-
edge bases, assessing weights to conclusions on the basig-gfémtailment relation-



ship from possibilistic logic [11]. A direct comparison to dryrrelationship is not easy
since we are using a logic programming framework and not general propositional logic,
but roughly speaking while-,. takes into account the inconsistency degree associated
with the whole knowledge base, our logic programming framework allows us to perform
a dialectical analysis restricted only to conflicting arguments related with the goal being
solved.

The complexity of computing warranted beliefs can be better understood in the light
of the logical properties fo€, presented in this paper. There are only three properties
(inclusion, supraclassicality and subclassical cummulativity) which hold for this opera-
tor. Next we will briefly discuss some of the relevant properties which do not hold for
C,. In [16] some examples are informally presented to show that argumentation sys-
tems should assign facts a special status, and therefore shatidd cumulative. In the
particular case of cumulativity (traditionally the most defended property associated with
non-monotonic inference), we have shown that it does not hold'foeven when war-
ranted conclusions are assigned the epistemic status of uncertain facts of ti€@farm
« < 1, which provides an even stronger result than the one suggested originally in [16].

Horn right weakening indicates that a certain rule of the foim«— X, 1) doesnot
ensure that every warranted argument (&, o) (with o < 1) implies that(Y, «) is
also warranted. In fact, it can be the case that the certain(fakt, 1) is present in a
given program, so that an argument for the goatannot be even computed (as shown
in Example 3). In a recent paper [5], Caminada & Amgoud identify this situation as a
particular anomaly in several argumentation formalisms. ([15,12]) and provide an
interesting solution in terms g&tionality postulatesvhich —the authors claim— should
hold in any well-defined argumentative system. In the case of P-DeLP the problem seems
to require a different conceptualization, as the necessity degrethe rule(Y «— X, 1)
is attached to the rule itself, and the necessity degree of the conclusispendon
the necessity degree of the antecedenk. As an example, consider the progrdmn
={ (~g < a,1), (a,0.7), (g — b,1), (b,0.4) }. In this case,(a,0.7) and(b,0.4) are
warranted conclusions. However, we cannot wargaand~ g with necessity degree
In fact, only (~g,0.7) can be warranted. In this respect, the behavior of strict rules (as
used in most argumentation systems) seems to be different from the behavior of certain
rules in our framework.

5. Conclusions. Future work

In this paper we have shown that P-DeLP provides a useful framework for making a
formal analysis of logical properties of warrant in defeasible argumentation. We contend
that a formal analysis of defeasible consequence is mandatory to get an in-depth under-
standing of the behavior of argumentation frameworks. An expansion operatar |ike
provides a natural tool for characterizing that behavior, as well as useful criteria when de-
veloping and implementing new argumentation frameworks or assessing their expressive
power.

Our current research work in P-DeLP will follow two main directions: on the one
hand, we are concerned with characterizing diffedatdreesof non-monotonicity. We
think that theC', operator can be used to better understand how complex non-monotonic

w

systems behave. On the other hand, we will extend the current formalization to include



fuzzy constants and thus fuzzy unification features [2].
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