
Computing Dialectical Trees Efficiently
in Possibilistic Defeasible Logic Programming

Carlos I. Chesñevar1, Guillermo R. Simari2, and Lluis Godo3

1 Departament of Computer Science – Universitat de Lleida
C/Jaume II, 69 – 25001 Lleida, Spain – Email: cic@eps.udl.es

2 Department of Computer Science and Engineering – Universidad Nacional del Sur
Alem 1253, (8000) Bah́ıa Blanca, Argentina – Email: grs@cs.uns.edu.ar

3 Artificial Intelligence Research Institute (IIIA-CSIC)
Campus UAB - 08193 Bellaterra, Barcelona, Spain – Email: godo@iiia.csic.es

Abstract. Possibilistic Defeasible Logic Programming (P-DeLP) is a
logic programming language which combines features from argumenta-
tion theory and logic programming, incorporating as well the treatment
of possibilistic uncertainty and fuzzy knowledge at object-language level.
Solving a P-DeLP query Q accounts for performing an exhaustive anal-
ysis of arguments and defeaters for Q, resulting in a so-called dialectical
tree, usually computed in a depth-first fashion. Computing dialectical
trees efficiently in P-DeLP is an important issue, as some dialectical
trees may be computationally more expensive than others which lead to
equivalent results. In this paper we explore different aspects concerning
how to speed up dialectical inference in P-DeLP. We introduce defini-
tions which allow to characterize dialectical trees constructively rather
than declaratively, identifying relevant features for pruning the associ-
ated search space. The resulting approach can be easily generalized to be
applied in other argumentation frameworks based in logic programming.

Key words: Defeasible Argumentation, Logic Programming, Dialectical Reasoning

1 Introduction and motivations

Possibilistic Defeasible Logic Programming (P-DeLP) [1] is a logic programming
language which combines features from argumentation theory and logic pro-
gramming, incorporating as well the treatment of possibilistic uncertainty and
fuzzy knowledge at object-language level. As in many argumentation frameworks
based in logic programming, solving a P-DeLP query Q accounts for performing
an exhaustive analysis of arguments and defeaters for Q, resulting in a so-called
dialectical tree, usually computed in a depth-first fashion.

Computing dialectical trees efficiently in P-DeLP is an important issue, as
some dialectical trees may be computationally more expensive than others which
lead to equivalent results. In this paper we explore different aspects concerning
how to speed up dialectical inference in P-DeLP. We introduce definitions which
allow to characterize dialectical trees constructively rather than declaratively,

identifying relevant features for pruning the associated search space. The re-
sulting approach can be easily generalized to be applied in other argumentation
frameworks based in logic programming.

The rest of the paper is structured as follows. Section 2 summarizes the details
of P-DeLP. Section 3 discusses how computation of dialectical trees can be
modelled in the context of P-DeLP, a characterization extensible to other similar
frameworks. Section 4 presents a generic algorithm for computing dialectical
trees in a depth-first fashion, as well as some criteria to be considered for pruning
the resulting search space. Finally, Section 5 summarizes related work and the
main conclusions that have been obtained.

2 The P-DeLP programming language: fundamentals

The P-DeLP language L is defined from a set of ground fuzzy atoms (fuzzy
propositional variables) {p, q, . . .} together with the connectives {∼, ∧, ← }.
The symbol ∼ stands for negation. A literal L ∈ L is a ground (fuzzy) atom
q or a negated ground (fuzzy) atom ∼q, where q is a ground (fuzzy) proposi-
tional variable. A rule in L is a formula of the form Q ← L1 ∧ . . . ∧ Ln, where
Q,L1, . . . , Ln are literals in L. When n = 0, the formula Q ← is called a fact and
simply written as Q. The term goal will be used to refer to any literal Q ∈ L.4

In the following, capital and lower case letters will denote literals and atoms in
L, respectively.

Definition 1 (P-DeLP formulas). The set Wffs(L) of wffs in L are facts, rules
and goals built over the literals of L. A certainty-weighted clause in L, or simply
weighted clause, is a pair of the form (ϕ, α), where ϕ ∈ Wffs(L) and α ∈ [0, 1] expresses
a lower bound for the certainty of ϕ in terms of a necessity measure.

The original P-DeLP language [1] is based on Possibilistic Gödel Logic or
PGL [2], which is able to model both uncertainty and fuzziness and allows for a
partial matching mechanism between fuzzy propositional variables. For simplic-
ity and space reasons we will restrict ourselves to fragment of P-DeLP built on
non-fuzzy propositions, and hence based on the necessity-valued classical propo-
sitional Possibilistic logic [3]. As a consequence, possibilistic models are defined
by possibility distributions on the set of classical interpretations 5 and the proof
method for our P-DeLP formulas, written `, is defined based on the following
generalized modus ponens rule (GMP):

(L0 ← L1 ∧ · · · ∧ Lk, γ)
(L1, β1), . . . , (Lk, βk)

(L0, min(γ, β1, . . . , βk))

which is a particular instance of the well-known possibilistic resolution rule,
and which provides the non-fuzzy fragment of P-DeLP with a complete calculus
4 Note that conjunction of literals is not a valid goal.
5 Although the connective ← in logic programming is different form the material

implication, e.g. p ← q is not the same as ∼ q ← ∼ p, regarding the possibilistic
semantics we assume here they share the same set interpretations.

(1) (∼fuel ok ← pump clog, 1)
(2) (sw1, 1)
(3) (sw2, 1)
(4) (sw3, 1)
(5) (heat, 1)
(6) (pump fuel ← sw1 , 0.6)
(7) (fuel ok ← pump fuel, 0.3)
(8) (pump oil ← sw2 , 0.8)

(9) (oil ok ← pump oil, 0.8)
(10) (engine ok ← fuel ok ∧ oil ok , 0.3)
(11) (∼engine ok ← fuel ok ∧ oil ok ∧ heat, 0.95)
(12) (∼oil ok ← heat, 0.9)
(13) (pump clog ← pump fuel ∧ low speed, 0.7)
(14) (low speed ← sw2 , 0.8)
(15) (∼low speed ← sw2 , sw3 , 0.8)
(16) (fuel ok ← sw3 , 0.9)

Fig. 1. P-DeLP program Peng (example 1)

for determining the maximum degree of possibilistic entailment for weighted
literals.6

In P-DeLP we distinguish between certain and uncertain clauses. A clause
(ϕ, α) will be referred as certain if α = 1 and uncertain, otherwise. Moreover, a
set of clauses Γ will be deemed as contradictory, denoted Γ ` ⊥, if Γ ` (q, α) and
Γ ` (∼q, β), with α > 0 and β > 0, for some atom q in L.7 A P-DeLP program
is a set of weighted rules and facts in L in which we distinguish certain from
uncertain information. As additional requirement, certain knowledge is required
to be non-contradictory. Formally:

Definition 2 (Program). A P-DeLP program P (or just program P) is a pair
(Π, ∆), where Π is a non-contradictory finite set of certain clauses, and ∆ is a finite
set of uncertain clauses.

Example 1. Consider an intelligent agent controlling an engine with three switches
sw1, sw2 and sw3. These switches regulate different features of the engine, such as
pumping system, speed, etc. The knowledge of such an agent can be modelled by the
program Peng shown in Fig. 1. Note that uncertainty is assessed in terms of different
necessity measures. This agent may have the following certain and uncertain knowledge
about how this engine works, e.g. “if the pump is clogged, then the engine gets no fuel
with necessity measure of 1” (rule 1) or “When there is heat, then oil is usually not ok
with necessity measure of 0.9” (rule 12). Suppose also that the agent knows that sw1,
sw2 and sw3 are on, and there is heat (rules 1-5). The agent wants to determine if the
engine is ok on the basis of this program Peng.

Definition 3 (Argument. Subargument). Given a program P = (Π, ∆), a set
A ⊆ ∆ of uncertain clauses is an argument for a goal Q with necessity degree α > 0,
denoted 〈A, Q, α〉, iff: (1) Π ∪ A ` (Q, α); (2) Π ∪ A is non contradictory; and (3)
There is no A1 ⊂ A such that Π ∪A1 ` (Q, β), β > 0. Let 〈A, Q, α〉 and 〈S, R, β〉 be
two arguments. We will say that 〈S, R, β〉 is a subargument of 〈A, Q, α〉 iff S ⊆ A.
Notice that the goal R may be a subgoal associated with the goal Q in the argument A.

Note that from the definition of argument, it follows that on the basis of a
P-DeLP program P there may exist different arguments 〈A1, Q, α1〉, 〈A2, Q, α2〉,
6 From now on we will simply use P-DeLP to actually refer to the non-fuzzy fragment

of the original P-DeLP.
7 For a given goal Q, we write ∼Q as an abbreviation to denote “∼q” if Q ≡ q and

“q” if Q ≡ ∼q.

. . . , 〈Ak, Q, αk〉 supporting a given goal Q, with (possibly) different necessity
degrees α1, α2, . . . , αk. Arguments are built by backward chaining on the basis of
the P-DeLP program P. The necessity degree of the conclusion of an argument in-
volving clauses (C1, β1), . . . (Ck, βk) is defined as min(β1, . . . , βk). Consequently,
if 〈S, R, β〉 is a subargument of an argument 〈A, Q, α〉, then β ≥ α.

Example 2. Consider theprogram Peng in Ex 1. The argument 〈A1, engine ok, 0.3〉
can be obtained, with

A1 = {(engine ok ← fuel ok ∧ oil ok , 0.3), (pump fuel ← sw1 , 0.6);
(fuel ok ← pump fuel , 0.3), {(pump oil ← sw2 , 0.8);(oil ok ← pump oil , 0.8)}.

In particular, the argument 〈B, fuel ok, 0.3〉, with B= {(pump fuel ← sw1 , 0.6);
(fuel ok ← pump fuel , 0.3)}, is a subargument of 〈A1, engine ok, 0.3〉.

Conflict among arguments will be formalized by the notions of counterargu-
ment and defeat presented next.

Definition 4 (Counterargument). Let P be a program, and let 〈A1, Q1, α1〉
and 〈A2, Q2, α2〉 be two arguments wrt P. We will say that 〈A1, Q1, α1〉 counterar-
gues 〈A2, Q2, α2〉 iff there exists a subargument (called disagreement subargument)
〈S, Q, β〉 of 〈A2, Q2, α2〉 such that Π ∪ {(Q1, α1), (Q, β)} is contradictory. The literal
(Q, β) will be called disagreement literal.

Example 3. Consider the program from Ex 1. Another argument 〈A2,∼ fuel ok, 0.6〉
can be found, with

A2 = { (∼fuel ok ← sw1 , 0.6), (low speed ← sw2 , 0.8),
(pump clog ← pump fuel ∧ low speed , 0.7)}

Argument 〈A2,∼fuel ok, 0.6〉 is a counterargument for 〈A1, engine ok, 0.3〉 as there
exists a subargument 〈B, fuel ok, 0.3〉 in 〈A1, engine ok, 0.3〉 (see Example 2) such
that Π ∪ {(fuel ok, 0.3), (∼fuel ok, 0.6)} is contradictory.

Defeat among arguments involves a preference criterion on conflicting argu-
ments, defined on the basis of necessity measures associated with arguments.

Definition 5 (Defeat). Let P be a program, and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉
be two arguments in P. We will say that 〈A1, Q1, α1〉 is a defeater for 〈A2, Q2, α2〉
iff 〈A1, Q1, α1〉 counterargues argument 〈A2, Q2, α2〉 with disagreement subargument
〈A, Q, α〉, with α1 ≥ α. If α1 > α then 〈A1, Q1, α1〉 is called a proper defeater, other-
wise (α1 = α) it is called a blocking defeater.

Example 4. Consider 〈A1, engine ok, 0.3〉 and 〈A2,∼ fuel ok, 0.6〉 in Ex. 3. Then
〈A2,∼ fuel ok, 0.6〉 is a proper defeater for 〈A1, engine ok, 0.3〉, as 〈A2,∼ fuel ok, 0.6〉
counterargues 〈A1, engine ok, 0.3〉 with disagreement subargument 〈B, fuel ok, 0.3〉,
and 0.6 > 0.3.

Definition 6 (Argumentation line). An argumentation line λ starting in an
argument 〈A0, Q0, α0〉 is a finite sequence of arguments [〈A0, Q0, α0〉, 〈A1, Q1, α1〉,
. . . , 〈An, Qn, αn〉, . . .] such that every 〈Ai, Qi, αi〉 defeats 〈Ai−1, Qi−1, αi−1〉, for 0 <
i ≤ n, satisfying certain dialectical constraints (see below). Every argument 〈Ai, Qi, αi〉
in λ has level i. We will distinguish the sets

Sk
λ=
S

i=0,2,...,2bk/2c{〈Ai, Qi, αi〉 ∈ λ} and Ik
λ=
S

i=1,3,...,2bk/2c+1{〈Ai, Qi, αi〉 ∈ λ}

associated with even-level (resp. odd-level) arguments in λ up to the k-th level (k ≤ n).

An argumentation line can be thought of as an exchange of arguments be-
tween two parties, a proponent (evenly-indexed arguments) and an opponent
(oddly-indexed arguments). In order to avoid fallacious reasoning, argumenta-
tion theory imposes additional constraints on such an argument exchange to be
considered rationally acceptable wrt a P-DeLP program P, namely:8

1. Non-contradiction: given an argumentation line λ of length n the set Sn
λ associ-

ated with the proponent (resp. In
λ for the opponent) should be non-contradictory

wrt P.9

2. No circular argumentation: no argument 〈Aj , Qj , αj〉 in λ is a sub-argument
of an argument 〈Ai, Qi, αi〉 in λ, i < j.

3. Progressive argumentation: every blocking defeater 〈Ai, Qi, αi〉 in λ is de-
feated by a proper defeater 〈Ai+1, Qi+1, αi+1〉 in λ.

An argumentation line that cannot be further extended on the basis of a
given program P will be called exhaustive, otherwise it will be partial. Formally:

Definition 7 (Partial/exhaustive argumentation line). Given two argu-
mentation lines λ and λ′, we will say that λ′ extends λ iff λ is an initial subsequence
of λ′. An argumentation line λ will be called exhaustive iff there is no argumentation
line λ′ that extends λ; otherwise λ will be called partial.

As most argumentation systems [5, 6], in order to determine whether a given
argument is ultimately undefeated (or warranted) wrt a program P, the P-DeLP
framework relies on an exhaustive dialectical analysis. Such analysis is modelled
in terms of a dialectical tree,10 where every path can be seen as an exhaustive
argumentation line.

Definition 8 (Dialectical tree). Let P be a program, and let 〈A0, Q0, α0〉 be
an argument wrt P. A dialectical tree for 〈A0, Q0, α0〉, denoted T〈A0, Q0, α0〉, is a tree
structure defined as follows:

1. The root node of T〈A0, Q0, α0〉 is 〈A0, Q0, α0〉.
2. 〈B′, H ′, β′〉 is an immediate child of 〈B, H, β〉 iff there exists an exhaustive

argumentation line λ = [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . ,〈An, Qn, αn〉, . . .] such
that there are two elements 〈Ai+1, Qi+1, αi+1〉 = 〈B′, H ′, β′〉 and 〈Ai, Qi, αi〉
=〈B, H, β〉, for some i = 0 . . . n− 1.

8 These constraints may vary from one particular argumentation framework to an-
other. In particular, parametrizing dialectical trees with constraints on argumenta-
tion lines may give rise to characterizations of different logic programming semantics,
as shown in [4].

9 Non-contradiction for a set of arguments is defined as a generalization of Def. 3: a
set S =

Sn
i=1{〈Ai, Qi, αi〉} of arguments is contradictory wrt P iff Π ∪Sn

i=1Ai is
contradictory.

10 In some frameworks other names are used for denoting tree-like structures of argu-
ments, e.g. ‘argument tree’ or ‘dialogue tree’ [7, 8].

Example 5. Consider Ex. 1. To compute the dialectical tree for 〈A1, engine ok, 0.3〉,
the P-DeLP inference engine computes argumentation lines by depth-first search. A
defeater for 〈A1, engine ok, 0.3〉 is found, namely 〈A2,∼ fuel ok, 0.6〉 (Ex. 4). This
defeater can on its turn be defeated by a third defeater 〈A3,∼low speed, 0.8〉, with dis-
agreement subargument 〈A2

′, low speed, 0.8〉. Note that argument 〈A4, fuel ok, 0.9〉,
with A4 = { (fuel ok ← sw3 , 0.9) } would be also a defeater for 〈A2,∼ fuel ok, 0.6〉.
This completes the analysis of defeaters for 〈A2,∼ fuel ok, 0.6〉. Backtracking to ar-
gument 〈A1, engine ok, 0.3〉, another defeater is found, namely 〈A5,∼ engine ok, 0.3〉,
with

A5 = { (∼ engine ok ← fuel ok ∧ oil ok ∧ heat , 0.95) ; (pump fuel ← sw1 , 0.6);
(fuel ok ← pump fuel , 0.3), (pump oil ← sw2 , 0.8); (oil ok ← pump oil , 0.8)}.

Note that no further arguments can be found in the dialectical analysis. Although
〈A6,∼ oil ok, 0.9〉, with A6 = { (∼ oil ok ← heat , 0.9) } seems a possible defeater for
〈A5,∼ engine ok, 0.3〉, such argument would be fallacious as A1 supports oil ok, and
there would be even-level arguments (namely A1 and A5) supporting contradictory
conclusions. Therefore three different exhaustive argumentation lines can be computed,
namely rooted in 〈A1, engine ok, 0.3〉, namely:

• [〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉, 〈A3,∼ low speed, 0.8〉]
• [〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉, 〈A4, fuel ok, 0.9〉]
• [〈A1, engine ok, 0.3〉, 〈A5,∼ engine ok, 0.3〉]

Fig. 2(b) shows the corresponding dialectical tree T〈A1, engine ok, 0.3〉.

Nodes in a dialectical tree T〈A0, Q0, α0〉 can be marked as undefeated and
defeated nodes (U-nodes and D-nodes, resp.). A dialectical tree will be marked
as an and-or tree: all leaves in T〈A0, Q0, α0〉 will be marked U-nodes (as they have
no defeaters), and every inner node is to be marked as D-node iff it has at least
one U-node as a child, and as U-node otherwise. Note that α − β pruning (see
Fig. 2(a)) can be applied, so not every node in the tree needs to be generated.
We will write Mark(Ti) = U (resp.Mark(Ti) = D) to denote that the root node
of Ti is marked as U -node (resp. D-node).

Definition 9 (Warrant). An argument 〈A0, Q0, α0〉 is ultimately accepted as valid
(or warranted) with a necessity degree α0 wrt a program P iff the root of the tree
T〈A0, Q0, α0〉 is marked as U-node (i.e., Mark(T〈A0, Q0, α0〉) = U).

Example 6. Consider T〈A1, engine ok, 0.3〉 in Ex. 5. Fig. 2(b) shows the result of com-
puting Mark(T〈A1, engine ok, 0.3〉) = D with α− β pruning. From Def. 9 it holds that
〈A1, engine ok, 0.3〉 is not warranted.

3 Modelling the Computation of Dialectical Trees

P-DeLP –as well as other implemented logic programming approaches to argum-
entation– relies on depth-first search to generate dialectical trees. As discussed
before, such search can be improved by applying α−β pruning, so that not every
node (argument) is computed. A well-known fact in depth-first search is that the
order in which branches are generated is important. Fig. 2(b) shows a pruned

(a) (b) (c)

qD»»»»»
XXXXXq U q? q?

J
JqD qD

J
Jq? q?

J
Jq? q?

qU

J
JqU q? q?

J
Jq? q?

〈A1, engine ok, 0.3〉
(D)

¡
¡

@
@

〈A2,∼fuel ok, 0.6〉
(D)

〈A5,∼engine ok, 0.3〉
(U)?

¡
¡

@
@

〈A3,∼low speed, 0.8〉
(U)

〈A4, fuel ok, 0.6〉
(U)?

〈A1, engine ok, 0.3〉
(D)

〈A5,∼engine ok, 0.3〉
(U)

Fig. 2. (a) Dialectical tree, where ?’s denote arguments that do not need to be gener-
ated because of α−β pruning; (b) Dialectical Tree T〈A1, engine ok, 0.3〉 with exhaustive
argumentation lines (ex. 5) marked with α−β pruning; (c) Optimally settled dialectical
tree T ′

dialectical tree, where only three arguments were actually computed to deem
the root node as defeated. Fig. 2(c) shows that there is an alternative analysis
which renders the search space even smaller, by considering first the argument
〈A5,∼ engine ok, 0.3〉 instead of 〈A2,∼ fuel ok, 0.6〉. Such evaluation order for
generating argumentation lines is an issue not taken into account in existing
formalizations of argumentation frameworks which mostly rely on dialectical
trees computed exhaustively. On the other hand, the actual branching factor of
a the dialectical tree is clearly restricted by dialectical constraints as discussed
in Def. 6. In order to take into account such features we will introduce some new
definitions required to characterize dialectical trees constructively rather than
declaratively as follows.

Definition 10 (Dialectical tree (revisited)). Consider the definition of dialec-
tical tree (as in Def. 8) without the restriction of argumentation lines being exhaustive.
A dialectical tree T〈A0, Q0, α0〉 will be called exhaustive iff each of its argumentation
lines is exhaustive, otherwise T〈A0, Q0, α0〉 will be called partial. We will write TreeP
(or just Tree) to denote the set of all possible dialectical trees based on P.

In this new setting the process of building a dialectical tree can be thought
of as a computation starting from an initial tree (consisting of a single node),
evolving into more complex trees by adding stepwise new arguments (nodes).
This will be formalized by means of a precedence relationship “@” among trees:

Definition 11 (Precedence relationship @). Let P be a program, and let T,
T ′ be dialectical trees in P. We define a relationship @ ⊆ Tree × Tree, where T @ T ′
(expressed as T ′ evolves from T) whenever T ′ can be obtained from T by extending
some argumentation line in T. We will also write T @∗T ′ iff there exists a (possibly
empty) sequence T1, T2, . . . , Tk such that T = T1 @ . . .@ Tk = T ′.

Clearly from Defs. 7 and 10 the notion of exhaustive dialectical tree can
be recast as follows: A dialectical tree Ti is exhaustive iff there is no Tj 6= Ti

such that Ti @∗ Tj . In fact, every dialectical tree Ti can be seen as a ‘snapshot’
of the status of a disputation between two parties (proponent and opponent),

and the relationship “@” allows to capture the evolution of such disputation.
As discussed before, pruning strategies could be applied (e.g. α − β pruning),
allowing to determine whether the marking of the root of a partial tree without
computing its associated exhaustive tree. We formalize this situation as follows:

Definition 12 (Settled dialectical tree). Let Ti be a dialectical tree, such that
for every Tj evolving from Ti (i.e., Ti @∗Tj) it holds that Mark(Ti) = Mark(Tj). Then
Ti is a settled dialectical tree. A Ti is an optimally settled dialectical tree iff there is
no Ti

′@∗Ti such that Ti
′ is a settled dialectical tree.

Example 7. Consider the dialectical trees shown in Fig. 2(b) and (c). Then it holds
that T ′ @∗T〈A1, engine ok, 0.3〉. Note also that both T〈A1, engine ok, 0.3〉 and T ′ are

settled dialectical trees. In particular, T ′ is an optimally settled dialectical tree.

Note that from the above definition argumentation lines in a settled dialec-
tical tree are not necessarily exhaustive. It is also clear that every exhaustive
dialectical tree will be settled, although not necessarily optimally settled. Opti-
mally settled dialectical trees are those involving the least number of arguments
needed to determine whether the root of the tree is ultimately defeated or not
according to the marking procedure.

Proposition 1. Let P be a program, and 〈A0, Q0, α0〉 an argument in P. Then
〈A0, Q0, α0〉 is warranted with necessity degree α0 iff Mark(T〈A0, Q0, α0〉) = U , where
T〈A0, Q0, α0〉 is a settled dialectical tree.

Next we will analyze how to characterize the computation of dialectical trees
in depth-first fashion, modelling informed search oriented towards computing
optimally settled dialectical trees. Consider a leaf (argument) 〈B, H, β〉 in a
given argumentation line λ in a partial dialectical tree T which is not settled,
so that further computation will be needed (possibly expanding λ). Clearly, the
dialectical constraints given in Def. 6 make that not every defeater as defined in
Def. 5 can be used to extend λ. Defeaters satisfying dialectical constraints will
be called feasible defeaters. Formally:

Definition 13 (Feasible defeaters). Let T1 be a partial dialectical tree and let
〈B, H, β〉 be a leaf node in T1 at level k in an argumentation line λ. Let T be the
exhaustive dialectical tree associated with T1 and let {λ1, . . . λm} be the set of all possible
argumentation lines in T of length > k + 1 that extend λ, i.e. each λi has the form
[〈A0, Q0, α0〉, . . . , 〈B, H, β〉, 〈Bi, Hi, βi〉, . . .], for i = 1 . . . m. We define the set of
feasible defeaters for 〈B, H, β〉 wrt λ as FDefeat(〈B, H, β〉, λ) =

Sm
i=1{〈Bi, Hi, βi〉}.

Our depth-first approach can thus be improved by restricting search to fea-
sible defeaters. Note that in depth-first search there will be always one current
path associated with the last argument introduced. We call that path current
argumentation line. Clearly, if 〈B,H, β〉 is a leaf in the current argumenta-
tion line λ associated with the computation of a settled dialectical tree T, any
element in FDefeat(〈B, H, β〉, λ) is a possible candidate for expanding λ. The
marking of the tree T induces an order “≺eval” in FDefeat(〈B, H, β〉, λ): for any
two arguments 〈Bi,Hi, βi〉, 〈Bj ,Hj , βj〉 in FDefeat(〈B, H, β〉, λ), we will say that

Algorithm 1 BuildDialecticalTree
Input: 〈A, Q, α〉, λ = [〈A, Q, α〉] Output: T〈A, Q, α〉, Mark (Marking)
{uses α-β pruning and evaluation ordering ¹eval}
Global variable: T〈A, Q, α〉 Local variables: MarkAux, ParentDefeated, λ
{λ is the current argumentation line, initially λ = [〈A, Q, α〉]}

Put 〈A, Q, α〉 as root node of T〈A, Q, α〉
Compute FDefeat(〈A, Q, α〉, λ) = {〈A0, Q0, α0〉, . . . , 〈Ak, Qk, α0〉}
{FDefeat(〈A, Q, α〉, λ)= feasible defeaters for 〈A, Q, α〉 wrt λ}
If S 6= ∅

Then
ParentDefeated := false
While (ParentDefeated=false) and (S 6= ∅) do

Choose some 〈Ai, Qi, αi〉 ∈ S minimal wrt ≺eval

S := S \ {〈Ai, Qi, αi〉}
λ := λ ◦ 〈Ai, Qi, αi〉 {expand λ adding new argument 〈Ai, Qi, αi〉}
BuildDialecticalTree(〈Ai, Qi, αi〉, T〈Ai, Qi, αi〉, MarkAux)
Add T〈Ai, Qi, αi〉 as immediate subtree of 〈A, Q, α〉.
If MarkAux=U then ParentDefeated := true

end while
If ParentDefeated=false {S = ∅, all defeaters were defeated}
then Mark := U {mark T〈A, Q, α〉 as U}
else Mark := D {mark T〈A, Q, α〉 as D}

else {S = ∅, hence 〈A, Q, α〉 has no defeaters}
Mark := U {mark T〈A, Q, α〉 as U}

Return T〈A, Q, α〉, Mark

Fig. 3. Algorithm for building and labelling settled dialectical trees in a depth-first
fashion taking into account feasible defeaters and evaluation order ≺eval

〈Bi,Hi, βi〉 ≺eval〈Bj ,Hj , βj〉 if the subtree rooted in 〈Bi,Hi, βi〉 is marked be-
fore than the subtree rooted in 〈Bj ,Hj , βj〉. Fig. 3 illustrates how a dialectical
tree can be built in a depth-first fashion using α−β pruning and the evaluation
order ≺eval. In order to speed up the construction of a settled dialectical tree,
our approach will be twofold: on the one hand, we will identify which literals can
be deemed as candidates for computing feasible defeaters. On the other hand, we
will provide a definition of ≺eval which prunes the search space using dialectical
constraints.

4 Pruning Dialectical Trees in P-DeLP

Given an argument 〈A0, Q0, α0〉, building a dialectical tree T〈A0, Q0, α0〉 involves
computing defeaters in a recursive way. According to Def. 4, to automate the
computation of such defeaters it is necessary to detect the set of disagreement
literals { (L1, φ1), . . . , (Lk, φk) } that can be source of conflict with counter-
arguments 〈B1,H1, β1〉, . . . , 〈Bk, Hk, βk〉 that defeat 〈A0, Q0, α0〉. Fortunately,
in the context of P-DeLP this can be done on the basis of the consequents of
uncertain clauses associated with subarguments in 〈A0, Q0, α0〉.

Definition 14 (Set of consequents Co). Let 〈A0, Q0, α0〉 be an argument.
The set Co(〈A0, Q0, α0〉) = { (Q, α) | ∃ (Q ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) ∈ A0 such that
〈A, Q, α〉 is a subargument of 〈A0, Q0, α0〉 }. We generalize this to a set S of argu-
ments, S =

S
i=1...k 〈Ai, Qi, αi〉, defining Co(S) =

S
i=1...k Co(〈Ai, Qi, αi〉).11

Lemma 1 (Goal-driven defeat [9]). Let 〈A, Q, α〉 be an argument, and let
〈B, H, β〉 be a defeater for 〈A, Q, α〉. Then there exists an argument 〈B, H ′, β〉, such
that H ′ is the complement of a literal in Co(〈A, Q, α〉), (where complement of (L, γ)
is defined as (∼L, γ)).

Lemma 1 allows to search for defeaters automatically by backward chaining,
on the basis of the consequents of uncertain clauses in an argument. Thus if
(L, γ) ∈ Co(〈A0, Q0, α0〉), a search for a defeater with disagreement literal (L, φ)
will involve finding an argument for concluding (∼L, γ′), with γ′ ≥ γ.

Example 8. Consider 〈A1, engine ok, 0.3〉 in Ex. 2. Then Co(〈A1, engine ok, 0.3〉)
= { (engine ok, 0.3), (pump fuel, 0.6), (fuel ok, 0.3), (oil ok, 0.3), (pump oil, 0.8) }.
Defeaters for 〈A1, engine ok, 0.3〉 can be found by backward chaining from the comple-
ment of each weighted literal (L, γ), searching for arguments for (∼L, γ′), with γ′ ≥ γ.

From the above considerations we can establish the following inclusionship
for detecting candidate disagreement literals in an argument 〈A, Q, α〉 appearing
as a leaf in an argumentation line λ:

Optimal(〈A, Q, α〉, λ) ⊆ Feasible(〈A, Q, α〉, λ) ⊆ Co(〈A, Q, α〉)
Here Feasible(〈A, Q, α〉, λ) denotes the set of weighted literals (φ, α) which are
possible disagreement literals for 〈A, Q, α〉 for some feasible defeater, whereas
Optimal(〈A, Q, α〉, λ) denotes the set of weighted literals (φ, α) which are pos-
sible disagreement literals for feasible defeaters leading to the shortest argu-
mentation lines.12 Clearly Optimal(〈A, Q, α〉, λ) is in a sense an ideal set of
disagreement literals, for which we can find different approximations. One possi-
bility is to consider the set Feasible(〈A, Q, α〉, λ). However, determining feasible
defeaters is computationally also quite a difficult task, as it involves checking dif-
ferent dialectical constraints (see Def. 6). As discussed before, a more tractable
way to detect candidate defeaters is to consider the set Co(〈A, Q, α〉).

A better approximation than Co(〈A, Q, α〉) can be stated taking into account
the following intuition: let us assume that the current argumentation line λ has
been computed up to level k. From the ‘non-contradiction’ constraint, even-level
as well as odd-level arguments in λ should not be contradictory. This accounts
to saying also that literals which are common to both even-level and odd-level
arguments cannot be disagreement literals within any extension of λ. To for-
malize this notion, we will suitably extend the definitions for set intersection
and difference for weighted literals as follows: given two sets of weighted literals
S1 and S2, we define intersection among S1 and S2 as S1 u S2 =def{(Q,α) |
11 Note that the set Co(〈A0, Q0, α0〉) can be easily computed along the derivation

process of the argument itself.
12 Note that this is a set, as there may be different argumentation lines extending λ,

all of them having the same length.

(Q,α1) ∈ S1 and (Q, α2) ∈ S2, with α = min(α1, α2) }. Similarly, we define
difference among S1 and S2 as follows: S1 \ S2 =def { (Q,α) | (Q,α) ∈ S1 and
6 ∃(Q, β) ∈ S2, for β > 0 }
Definition 15 (Set SharedLit). Let λ be an argumentation line. SharedLit(λ, k) is
the set of weighted literals common to even-level and odd-level arguments up to level k,
i.e. SharedLit(λ, k) =def Co(Sk

λ) uCo(Ik
λ).

Proposition 2. Let λ be an argumentation line in a partial dialectical tree T, and let
〈A, Q, α〉 an argument which is a leaf in λ at level k. Let (L, γ) ∈ SharedLit(λ, k), k > 0.
Then (L, γ′) 6∈ Feasible(〈A, Q, α〉, λ), for any γ′ ≥ γ.

Proposition 2 allows to further refine the inclusion relationship given before
as follows:

Feasible(〈A, Q, α〉, λ) ⊆ Co(〈A, Q, α〉) \ SharedLit(λ, k) ⊆ Co(〈A, Q, α〉)
We can now come back to the original question: how to choose which defeater

belongs to the (on the average) shorter argumentation line, i.e. the one more
prone to settle the disputation as soon as possible. From our preceding results
we can suggest the following definition for ≺eval:

Definition 16 (Evaluation order based on SharedLit). Let λ be an argumen-
tation line, and let 〈A, Q, α〉 be a leaf at level k. Let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉
be two candidate defeaters for 〈A, Q, α〉, such that λ can be extended to λ1 (using
〈A1, Q1, α1〉) or λ2 (using 〈A2, Q2, α2〉). Then 〈A1, Q1, α1〉 ≺eval〈A2, Q2, α2〉 iff
Co(〈A1, Q1, α1〉) \ SharedLit(λ1, k + 1) ⊆ Co(〈A2, Q2, α2〉) \ SharedLit(λ2, k + 1).13

Example 9. Consider the argument 〈A1, engine ok, 0.3〉 as in Ex. 2 and 8, and as-
sume that the current argumentation line is λ = [〈A1, engine ok, 0.3〉]. In such a
case the set FDefeat(〈A1, engine ok, 0.3〉, λ) has two defeaters { 〈A2,∼ fuel ok, 0.6〉,
〈A5,∼ engine ok, 0.3〉 }, computed in Ex. 3 and 5. Argumentation line λ can there-
fore be extended in two different ways, λ1 = λ◦ 〈A2,∼ fuel ok, 0.6〉 and λ2 = λ◦
〈A5,∼ engine ok, 0.3〉. Let us compute the set of consequents for these arguments:

Co(〈A1, engine ok, 0.3〉) = { (engine ok, 0.3), (pump fuel, 0.6),
(fuel ok, 0.3), (oil ok, 0.3), (pump oil, 0.8)}.

Co(〈A5,∼engine ok, 0.3〉) = {(∼engine ok, 0.3), (pump fuel, 0.6), (fuel ok, 0.3),
(oil ok, 0.3), (pump oil, 0.8)}.

Co(〈A2,∼fuel ok, 0.6〉) = { (∼fuel ok, 0.6), (low speed, 0.8), (pump clog, 0.7) }
From the above sets we have then SharedLit(λ1, 1) = ∅ and SharedLit(λ2, 1) = {
(engine ok, 0.3), (pump fuel, 0.6), (fuel ok, 0.3), (oil ok, 0.3), (pump oil, 0.8)}. Con-
sequently, it holds that

Co(〈A1, engine ok, 0.3〉)\SharedLit(λ2, 1) ⊂ Co(〈A1, engine ok, 0.3〉)\SharedLit(λ1, 1)

Thus the defeater 〈A5,∼ engine ok, 0.3〉 should be evaluated before the defeater
〈A2,∼ fuel ok, 0.6〉 in the depth-first computation of the dialectical tree using the
algorithm in Fig. 3.

Although Example 9 is rather näıve, it is intended to show one possible way of
characterizing the evaluation order ≺eval, reducing the average branching factor
of the dialectical tree when in a depth-first fashion.
13 Note that this partial order can be refined by considering those arguments with

higher necessity, i.e. given two defeaters 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 equally
preferred wrt ≺eval, the one having max(βi, βj) as necessity degree is preferred.

5 Related work. Conclusions

In this paper we have presented a novel approach to characterize dialectical
reasoning in the context of Possibilistic Defeasible Logic Programming, aiming
at speeding up the underlying inference procedure. The contribution of this
paper is twofold: on the one hand, we have formalized the notion of dialectical
trees constructively, taking into account salient features in modelling the depth-
first construction of such trees. On the other hand, we have analyzed the role of
dialectical constraints as an additional element for pruning the resulting search
space. Although our characterization is based in P-DeLP, it can be generalized
to be applied in other argumentation frameworks based on logic programming. It
must be remarked that P-DeLP is an extension of Defeasible Logic Programming
[9], which has been successfully integrated in a number of real-world applications
(e.g. clustering [10], and recommender systems [11]).

Our work complements previous research concerning the dynamics of argu-
mentation, notably [12] and [13]. In particular, Prakken [12] has analyzed the
exchange of arguments in the context of dynamic disputes. Our approach can also
be understood in the light of his characterization of dialectical proof theories.
However, Prakken focuses on a comprehensive but rather general framework,
in which important computational issues (e.g. detecting disagreement literals,
search space considerations, etc.) are not taken into account. Hunter [14] ana-
lyzes the search space associated with dialectical trees taking into account novel
features such as the resonance of arguments. His interesting formalization com-
bines a number of features that allow to assess the impact of dialectical trees,
contrasting shallow vs. deep trees. However, computational aspects as the ones
analyzed in this paper are outside the scope of his work. In [4] a throughout
analysis of various argumentation semantics for logic programming is presented
on the basis of parametric variations of derivation trees. In contrast with that
approach, our aim in this paper was not to characterize different emerging seman-
tics, but rather to focus on an efficient construction of dialectical trees for speed-
ing up inference. On the other hand, in [4] the authors concentrate in normal
logic programming, whereas our approach deals with extended logic program-
ming enriched with necessity degrees. Recently semantical aspects of P-DeLP
have been analyzed in the context of specialized inference operators [15].

It must be remarked that our approach can also be improved by considering
the non-circularity constraint (see Def. 6) for argumentation lines: as the cur-
rent argumentation line λ is computed, the set of feasible defeaters associated
to the last argument in λ at level k is also restricted by arguments which al-
ready appeared earlier at any level k′ < k. Part of our current research work
involves how to extend our algorithm to include such non-circularity constraints
in our analysis, in order to develop a full-fledged implementation of the algo-
rithm presented in this paper including such features. Our experiments so far
have been performed only on a “proof of concept” prototype, as we have not
been able yet to carry out thorough evaluations in the context of a real-world
application. The results obtained, however, have been satisfactory and as stated

before can be generalized to most argumentation frameworks. The development
of such generalization is part of our future work.

Acknowledgements This research was partially supported by Projects TIC2003-
00950, TIN2004-07933-C03-01/03, by Ramón y Cajal Program (Ministerio de Ciencia y
Tecnoloǵıa, Spain), by CONICET (Argentina), by the Secretaŕıa General de Ciencia y
Tecnoloǵıa de la Universidad Nacional del Sur and by Agencia Nacional de Promoción
Cient́ıfica y Tecnológica (PICT 2002 No. 13096).

References

1. Chesñevar, C.I., Simari, G., Alsinet, T., Godo, L.: A Logic Programming Frame-
work for Possibilistic Argumentation with Vague Knowledge. In: Proc. of the Intl.
Conf. in Uncertainty in Art. Intelligence. (UAI 2004). Banff, Canada. (2004) 76–84

2. Alsinet, T., Godo, L.: A complete calculus for possibilistic logic programming with
fuzzy propositional variables. In: Proc. of the UAI-2000 Conference. (2000) 1–10

3. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In D.Gabbay, C.Hogger,
J.Robinson, eds.: Handbook of Logic in Art. Int. and Logic Prog. (Nonmonotonic
Reasoning and Uncertain Reasoning). Oxford Univ. Press (1994) 439–513

4. Kakas, A., Toni, F.: Computing argumentation in logic programming. Journal of
Logic Programming 9 (1999) 515:562

5. Chesñevar, C.I., Maguitman, A., Loui, R.: Logical Models of Argument. ACM
Computing Surveys 32 (2000) 337–383

6. Prakken, H., Vreeswijk, G.: Logical Systems for Defeasible Argumentation. In
Gabbay, D., F.Guenther, eds.: Handbook of Philosophical Logic. Kluwer Academic
Publishers (2002) 219–318

7. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial
Intelligence 1:2 (2001) 203–235

8. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. Journal of Applied Non-classical Logics 7 (1997) 25–75

9. Garćıa, A., Simari, G.: Defeasible Logic Programming: An Argumentative Ap-
proach. Theory and Practice of Logic Programming 4 (2004) 95–138

10. Gómez, S., Chesñevar, C.: A Hybrid Approach to Pattern Classification Using
Neural Networks and Defeasible Argumentation. In: Proc. of 17th Intl. FLAIRS
Conf. Miami, Florida, USA, AAAI Press (2004) 393–398

11. Chesñevar, C., Maguitman, A.: An Argumentative Approach to Assessing Natural
Language Usage based on the Web Corpus. In: Proc. of the ECAI-2004 Conference.
Valencia, Spain. (2004) 581–585

12. Prakken, H.: Relating protocols for dynamic dispute with logics for defeasible
argumentation. Synthese (special issue on New Perspectives in Dialogical Logic)
127 (2001) 187:219

13. Brewka, G.: Dynamic argument systems: A formal model of argumentation pro-
cesses based on situation calculus. J. of Logic and Computation 11 (2001) 257–282

14. Hunter, A.: Towards Higher Impact Argumentation. In: Proc. of the 19th American
National Conf. on Artificial Intelligence (AAAI’2004), MIT Press (2004) 275–280

15. Chesñevar, C., Simari, G., Godo, L., Alsinet, T.: Argument-based expansion op-
erators in possibilistic defeasible logic programming: Characterization and logical
properties. In: 8th European Conf. on Symbolic and Qualitative Aspects of Rea-
soning Under Uncertainty (ECSQARU 2005), Barcelona, Spain (to appear). (2005)

