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Abstract

Possibilistic Defeasible Logic Programming (P-DeLP) is a logic programming language which com-
bines features from argumentation theory and logic programming, incorporating as well the treatment of
possibilistic uncertainty and fuzzy knowledge at object-language level. Defeasible argumentation in ge-
neral and P-DeLP in particular provide a way of modelling non-monotonic inference. When modelling
intelligent agents, capturing defeasible inference relationships for modelling argument and warrant is par-
ticularly important, as well as the study of their logical properties. This paper analyzes two specialized
non-monotonic operators for P-DeLP which model éxpansiorof a given progran? by adding new
weighed facts associated with argument conclusions and warranted literals. Different logical properties
are studied and analyzed, providing useful comparison criteria that can be extended and applied to other
argumentation frameworks.

1 Introduction and motivations

Possibilistic Defeasible Logic Programming (P-DeLP) [13, 11] is a logic programming language which
combines features from argumentation theory and logic programming, incorporating as well the treatment
of possibilistic uncertainty and fuzzy knowledge at object-language level. These knowledge representation
features are formalized on the basis of PGL [1, 2], a possibilistic logic basedadeal izzy logic. In PGL
formulas are built over fuzzy propositional variables and the certainty degree of formulas is expressed with
a necessity measure. In a logic programming setting, the proof method for PGL is based on a complete
calculus for determining the maximum degree of possibilistic entailment of a fuzzy goal. The top-down
proof procedure of P-DeLP has already been integrated in a number of real-world applications such as
intelligent web search [9] and natural language processing [7], among others.

In a MAS context, we propose a model in which intelligent agents will encode their knowledge about
the world using a P-DeLP program [10], using the argument and warrant computing procedure to perform
their inferences. Clearly, P-DelLP-based agents will be usually performing their activities in a dynamic
environment, so that it should also be able to reason, plan, and act according to new perceptions from the
outside world. Such perceptions will be sensed by the agents, integrating them into their current beliefs.

Recent research [18, 21] has shown that argument-based approaches to formalize knowledge and rea-
soning in intelligent agents have proven to be very successful. We contend that in such settings an agent’s
reasoning capabilities can be better modelled and understood in terms of switaldace operatorsThe
advantages of such inference operators is twofold: on the one hand, from a theoretical viewpoint logical
properties of defeasible argumentation can be easier studied with such operators at hand. On the other
hand, actual implementations of argumentation systems could benefit from such logical properties for more
efficient computation in the context of real-world applications.

1A slightly different version of this paper (not considering how to model agent reasoning capabilities) was originally published
in [12]



This paper analyzes two non-monotoeixpansion operatorfor P-DelLP, intended for modelling the
effect of expanding a given program (which stands for an agent’s knowledge base) by introducing new facts,
associated with argument conclusions and warranted literals, respectively. The associated logical properties
are studied and contrasted with a traditional SLD-based Horn logic. We contend that this analysis provides
useful comparison criteria that can be extended and applied to other argumentation frameworks. As we
will show in this paper, expansion operators provide an interesting counterpart to traditional consequence
operators in logic programming [16]. For the sake of simplicity we will restrict our analysis to the fragment
of P-DeLP built over classical propositions, hence basedlassicalpossibilistic logic [14] and not on
PGL itself (which involves fuzzy propositions). The rest of the paper is structured as follows: Section 2
summarizes the fundamentals of the P-DeLP framework. Section 3 discusses how P-DeLP can be used
for modelling reasoning in intelligent agents, and the role of expansion operators for understanding the
relationships between argument-based inferences the agent could perform. Section 2 summarizes the P-
DeLP framework. In Section 4 we characterize two expansion operators for capturing the effect of expanding
a P-DeLP program by adding argument conclusions and warranted literals, as well as their emerging logical
properties. In Section 5 we discuss related work, and finally in Section 6 we summarize the most important
conclusions that have been obtained.

2 The P-DelLP programming language: fundamentals

The classical fragment of P-DeLP languagyes defined from a set of ground atoms (propositional variables)
{p,q, ...} together with the connectivgs-, A, <— }. The symbol~ stands fomegation A literal L € £

is a ground (fuzzy) atom or a negated ground (fuzzy) atoxy, whereq is a ground (fuzzy) propositional
variable. Arule in £ is a formula of the fornQQ — L; A ... A L,,, WwhereQ, L4, ..., L,, are literals in_.
Whenn = 0, the formula@ < is called afactand simply written ag). The termgoal will be used to refer

to any literalQ € £.2 In the following, capital and lower case letters will denote literals and atongs in
resp.

Definition 1 (P-DeLP formulas) The set WffsC) of wffs in £ are facts rules and goalsbuilt over the
literals of £. A certainty-weightectlause inZ, or simplyweighted clauseis a pair of the form(p, a),
wherep € Wff{£) and o € [0, 1] expresses a lower bound for the certaintyoin terms of a necessity
measure.

The original P-DeLP language [13] is based on Possibilistdéb Logic or PGL [1], which is able to
model both uncertainty and fuzziness and allows for a partial matching mechanism between fuzzy propo-
sitional variables. In this paper for simplicity and space reasons we will restrict ourselves to fragment of
P-DeLP built on non-fuzzy propositions, and hence based on the necessity-valued classical propositional
Possibilistic logic [14]. As a consequence, possibilistic models are defined by possibility distributions on
the set of classical interpretatiohand the proof method for our P-DeLP formulas, writtgris defined by
derivation based on the following generalized modus ponens rule (GMP):

(Lo Ly A+ ALg,v)
(L1,B1),- -+, (Lk, Br)
(Lo, min(y, B1,- -, Br))

which is a particular instance of the well-known possibilistic resolution rule, and which providesrihe
fuzzyfragment of P-DeLP with a complete calculus for determining the maximum degree of possibilistic
entailment for weighted literals.

In P-DeLP we distinguish betweearertain anduncertainclauses. A clausép, «) will be referred as
certain ifa. = 1 and uncertain, otherwise. Moreover, a set of claisasll be regarded asontradictory
denoted - L, if I' - (¢,«) andT F (~q, 3), with @ > 0 andg > 0, for some atony in £*. A P-DeLP
program is a set of weighted rules and fact£iim which we distinguish certain from uncertain information.

As additional requirement, certain knowledge is required to be non-contradictory. Formally:

Note that a conjunction of literals is not a valid goal.

3Although the connective— in logic programming is different from the material implication, eg.«< ¢ is not the same as
~q < ~p, regarding the possibilistic semantics we assume here they share the same set interpretations.

“Notice that this notion of contradiction corresponds to the case when the inconsistency dégiestdttly positive as defined in
possibilistic logic.



Definition 2 (Program) A P-DeLP programpP (or just programP) is a pair (II, A), wherell is a non-
contradictory finite set of certain clauses, afdis a finite set of uncertain clauses. 7 = (II,A) is a
program, we will also writeP™! (resp.P4) to identify the set of certain (resp. uncertain) clause®in

The following notion of argument is based on the one presented in [22] (and similar to [3, 4]), and
considers the necessity degree with which the argument supports a conclusion. The procedural mechanism
for computing arguments can be found in [11].

Definition 3 (Argument. Subargument) Given a progran® = (II, A), a set4 C A of uncertain clauses
is anargumenfor a goal ) with necessity degree > 0, denoted A, Q, o), iff: (1) TU A F (Q, ); (2)
ITU A is non contradictory; and (3) There is né; C A suchthallU A, - (Q, ), 5 > 0. Let(A, Q, «)
and(S, R, ) be two arguments. We will say th@&, R, 3) is asubargumentf (A, Q, «) iff S C A. Notice
that the goalR may be a subgoal associated with the g@ah the argument4.5

As in most argumentation formalisms (see e.g. [20, 8]), in P-DeLP it can be the case that there exist
conflictingarguments. Defeat among conflicting arguments involvpeeterence criteriordefined on the
basis of necessity measures associated with arguments.

Definition 4 (Counterargument) LetP be a program, and letA;, Q1, 1) and{As, @2, a2) be two ar-
guments wrtP. We will say that( A, Q1, 1) counterargues.A,, @2, as) iff there exists a subargument
(called disagreement subargumgis, Q, 8) of (As, Q2, az) such thatlll U {(Q1, a1), (Q, 3)} is contra-
dictory.

Definition 5 (Preference criterion =) LetP be a P-DeLP program, and I€t;, @1, «;) be a counterargu-
ment for(As, Q2, az). We will say that 4,, Q1, aq) is preferredover(As, Q2, o) (denoted Ay, @1, aq)
= (Ag, Q2,a2)) Iff a1 > aw. Ifitis the case thaty; > aw, then we will say thatA;, Q1, «y) is strictly
preferredover (A, Q2, ), denoted Ay, Q2, a2) = (A1, Q1, a1). Otherwise, ilv; = ao we will say that
both arguments arequi-preferreddenoted As, Q2, as) ~ (A1, Q1,a1).

Definition 6 (Defeat) Let P be a program, and letA;, @1, 1) and (As, Q2, as) be two arguments in
P. We will say that{(A;, @1, ;) defeats(As, Q2, a2) (or equivalently(A4;,Q1, ;1) is a defeaterfor
(Aa, Q2, a2)) iff (1) Argument{A;, Q1, a1 ) counterargues argumeritds, @2, as) with disagreement sub-
argument(A, @, «); and (2) Either it holds thatA;, Q1, 1) = (A, Q, «), in which cas€.A;, Q1, aq) will
be called aproper defeatefior (A, Q2, as), or (A1, Q1, 1) = (A, @, «), in which cas€.A;, Q1, 1) will
be called ablocking defeatefor (As, Q2, as).

As in most argumentation systems [8, 20], P-DeLP relies on an exhaustive dialectical analysis which
allows to determine if a given argument uftimately undefeated (owarranted wrt a programP. An
argumentation linestarting in an argumentAy, Qo, ap) is a sequence(Hg, Qo, o), (A1, Q1, 1), ...,

(An, Qn, an), ...] that can be thought of as an exchange of arguments between two papieppaent
(evenly-indexed arguments) and apponent(oddly-indexed arguments). In order to avdéédaciousrea-

soning, argumentation theory imposes additional constraints on such an argument exchange to be considered
rationally acceptable wrt a P-DeLP progrédmnamely:

1. Non-contradiction: given an argumentation ling, the set of arguments of the proponent (resp. opponent)
should benon-contradictorywrt P. Non-contradiction for a set of arguments is defined as follows: & set
Ui~ {(Ai, Qi, cu) } is contradictorywrt P iff ITU | J!"_, A; is contradictory.

2. No circular argumentation: there are no repeated argumenta ifie., if (A;, Q;, a;) € A, then it appears only
once in\).

3. Progressive argumentation: every blocking defeatefA;,Q:,a;) in A is defeated by a proper defeater
(Ait1, Qi1 cig1) in A

An argumentation line satisfying the above restrictions is calleckeptable and can be proven to be
finite. Given a progranP and an argumentAy, Qo, o), the set of all acceptable argumentation lines
starting in{ Ay, Qo, ap) accounts for a whole dialectical analysis {oty, Qo, ag) (i-e. all possible dialogues
rooted in( Ao, Qo, ap), formalized as alialectical tree denoted’ 4,, ,, ,)).- NOdes in a dialectical tree
T 40, Qo, o) CAN be marked asndefeatecinddefeatechodes (U-nodes and D-nodes, resp.). A dialectical

5Note that from the definition of argument, it follows that on the basis of a P-DeLP proBrtitare may exist different arguments
(A1,Q, 1), (A2,Q, a2), ..., (Ag, Q, ) supporting a given god), with (possibly) different necessity degrees, as, . . . , ag.
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Figure 1: A P-DelLP-based agent in a MAS context

tree will be marked as aaND-OR tree: all leaves ir7 4, q,, «,) Will be marked U-nodes (as they have no
defeaters), and every inner node is to be markdol-asdeiff it has at least one U-node as a child, anduas
nodeotherwise. An argumentdo, Qo, ap) is ultimately accepted asarrantediff the root of 7, 4, g, a0)

is aU-node

Definition 7 (Warrant) Given a progranP, and a goal@, we will say that) is warranted wrtP with a
necessity degree iff there exists a warranted argume(, @, ). We will write P (A, Q, ) to denote
that (A, @, «) is a warranted argument on the basis7ef

3 Modelling Agent Reasoning in P-DeLP

In a MAS context, we propose a model in which intelligent agents will encode their knowledge about the
world using a P-DeLP program [10], using the argument and warrant computing procedure to perform their
inferences. Figure 1 outlines the different elements associated with a P-DelLP-based agent. Clearly, our
agent will be usually performing its activities in a dynamic environment, so that it should also be able to
reason, plan, and act according to new perceptions from the outside world. Such perceptions will be sensed
by the agent, integrating them into its current beliefs. For the sake of simplicity, we will assume that such
perceptions constitute new facts to be added to the agent’s knowledge base. As already stated in the in-
troduction, fuzzy propositions provide us with a suitable representation model as our agent will probably
have vague or imprecise information about the real world, as its sensors are not perfect devices. Defining a
generic procedure for updating the agent’s knowledge base is not easy, as completely new incoming infor-
mation (e.g. facts with new predicate names) might result in the strict knowlétigeoming contradictory

(see Def. 2). A nave approach to model an updating procedure for P-DeLP can be found in [10]. A detailed
analysis of the technical aspects concerning this problem are presented in [6].

An interesting problem arises when considering how the agent’s reasoning capabilities can be captured
on the basis of the P-DelLP formalism. As discussed in Section 2, P-DeLP allows an agent to construct
arguments and to analyze which literals are justified by means of the definition of warrant. It must be
noted that all conclusions which are based only on certain clauses can be understood as empty arguments
or “theorems” that follow from the prograrR. For a given prograr®, let Liti-(P) denote the set of all
possible literals provable from strict knowleddeza (P) the set of all possible weighed literals which can
be associated with argument conclusions @it (P) the set of all possible weighed literals which are
conclusions of warranted arguments. Formally:

Lite(P) = {(Q1)[PH(Q,1)}
Lita(P) = {(Q,«) |there exists some argumeAatfor ) with necessity degree }
Lit,(P) = {(Q,a)|P KA Q,«a), for some argument for Q with necessity degree }

Clearly, it holds that:

Lit (P) C Lity,(P) C Lita(P)



Which is the relationship between these distinguished sets and the prgg¥an answer to that ques-
tion can be given in terms of thokegical propertieswhich relate any non-monotonic inference relationship
“I " and a sef of sentences. In particular, we distinguish a classical inference op&tatavhich stands
for theorems that follow from the theory. For an in-depth treatment see [17]. Traditionally, the logical
properties analyzed in this context are the following:

1. Inclusion (IN): T C C(T)

Idempotence (IDy C(T") = C(C(TI"))

Cumulativity (CU) : v € C(T") implies¢ € C(T' U {~}) iff ¢ € C(T"), for any wifs~y, ¢ € L.
Monotonicity (MO) : " C @ impliesC(T") C C(®)

Supraclassicality Th(A) C C(A)

Left logical equivalence (LL): Th(A) = Th(B) impliesC(A) = C(B)

Right weakening (RW): If 2 O y € Th(A) andz € C(A) theny € C(A).8
Conjunction of conclusions (CC) If z € C(A) andy € C(A) thenz Ay € C(A).
Subclassical cumulativity (SC) If A C B C Th(A) thenC(A) = C(B).

. Left absorption (LA) : Th(C(T')) = C(I).

. Right absorption (RA): C(Th(I")) = C(I).

. Rationality of negation (RN): if Ar~ z then eithetA U {z} z or AU {~zx}|~ 2.

. Disjunctive rationality (DR) : if AU {z Vy}p zthenAU {z}r z or AU {y}|~ 2.
14. Rational monotonicity (RM): if Ap z then eitherA U {z}} z or A ~z.

© ® N o g bk wDd
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Our aim is to study the behavior of a P-DeLP program (which stands for an agent’'s knowledge base)
in the context of the above properties. In order to do this, we will define suitable inference operators for
expressing argument conclusions and warranted literals.

4 Logical properties of argument and warrant in P-DeLP
First, we will formalize the notion oéxpansion operatoas follows:

Definition 8 (Expansion operatorsC, , C, and C,) LetP be a P-DeLP program. We define the operators
C_, C, andC associated wittP as follows: (1)C_(P) = P U Lit,- (P); (2) C.(P) = P U Lita(P); (3)
C,(P)="PU Lit,(P).

OperatotC, computes the expansion Bfby adding new certain fac{s), 1) whenever such facts can be
derived inP via -8 OperatorC, computes the expansion Bfwith new facts corresponding to defeasible
knowledge derivable as argument conclusiofis(P) incorporates a new uncertain fa¢@, o) whenever
there exists an argumefitl, @, ) in P. Notice thatC, may contain contradictory knowledgéd. it may
be the case that two argumeniid;, Q, o) and(A,, ~Q, 3) could be inferred from a given program).’
Finally, operatorC, computes a subset @i, , namely the expansion @ including all new facts which
correspond to conclusions of warranted argumenfa.in

Proposition 9 OperatorsC, , C, and C,, are well-defined (ie, given a P-DeLP prografhas input, the
associated output is also a P-DeLP progratt). Besides, they satisfy the following relationshig: (P) C
C,(P) S C,(P)*

6]t should be noted thats” stands for material implication, to be distinguished from the symbel * used in a logic programming
setting.

7Sometimes also called “Right and”.

8OperatorCF defines in fact a classical consequence relationship, as it satisfies idempotence, cut and monotonicity. It can be seen
as the SLD Horn resolution counterpart in the context of P-DeLP restricted to certain clauses.

9For a given goal), we write~(Q as an abbreviation to denote-4” if Q = qand ‘q" if Q = ~q.

1%proofs for propositions in this paper can be found in [11, 12].



4.1 Logical properties for C,

Proposition 10 The operatoiC, satisfies inclusion and idempotence.

Monotonicity does not hold fof, , as expected. As a counterexample consider the prograrfi (¢, 1),
(p < ¢,0.9) }. Then(p,0.9) € C, (P), as there is an argumefi, p, 0.9) on the basis oP for concluding
(p,0.9), with A ={ (p < ¢,0.9) }. However,(p,0.9) ¢ C, (P U {(~p,1)}) (as no argument fofp, 0.9)
could exist, as condition 2 in Def. 3 would be violated). Semi-monotonicity is an interesting property for
analyzing non-monotonic consequence relationships. It is satisfied if all defeasible consequences from a
given theory are preserved when the theory is augmented witlle&asiblénformation.

Proposition 11 The operatoiC, satisfies semi-monotonicity when new defeasible information is adleed,
C. (Py) C C. (P UPy), whenPil = 0.

Cumulativity for argument construction shows us that any argument obtained from a prBgcam be
kept as an intermediate proof or lemma to be later used for building more complex arguments. Formally:

Proposition 12 The operatorC, satisfies cumulativityi.e. v € C, (T") implies¢ € C, (T' U {~}) iff ¢ €
C, ().

Note that the property of right weakening cannot be considered (in a strict sense) in P-DeLP, since
the underlying logic does not allow the application of the deduction theorem. Therefore, wifs of the form
(z — y, ) cannot be derived. However, an alternative approach can be intended, introducing a new property
in which right weakening is restricted to Horn-like clauses:

Proposition 13 The operatorC, satisfies (Horn) supraclassicality wet, (i.e. C,_(P) C C,(P)), and
(Horn) right weakening,i(e. if (Y,a) € C, (P)and(X « Y,1) € C_(P), then(X,a) € C, (P)).

Most of the non-pure logical properties f65, do not hold. In particularC, does not satisfy the prop-
erties of (LL) left-logical equivalence; (CC) conjunction of conclusions; (LA) left absorption; (RA) right
absorption; (RN) rational negation; (RM) rational monotonicity; (DR) disjunctive rationality, as shown next.

LL: Given two programs?; and P2, C_(P1) = C,_(P2) does not implyC, (P1) = C, (P2). ConsiderP; = {
(y—,1) }andP, =Py U{ (z < y,0.9) }.

LA: Consider the prograf® = {(Q, )}, whereQ is a literal,a. < 1.
ThenC, (G, (P)) =C, ({(Q,a)}) =0 # C, (P).

RA: Consider the same counterexample given for LA. AnalogodslyC, (P)) =C, (0) =0 # C, (P).

RN: ConsiderP; = { (~p « z,1), (~p «— ~z,1), (r —,1), (z < p,1), (p < r,0.9) }. Then it holds that
P1 (A1, 2,0.9), with Ay = { (p < r,0.9) } However,P1 U { (z < ,1) } /iv (A1,2,0.9), andPy U {
(~z 1)} (A1, 2,09).

RM: Consider the same counterexample as given for RN. Thef (A1, z,0.9), but it is not the case tha®, U {
(z—,1) } v (A1,2,0.9) norPy by (~z 1)

CC,DR: Clearly, C, does not satisfy property CC nor DR; disjunctions and conjunctions of goals supported by an
argument cannot be expressed as wffs in the P-DeLP object language.

4.2 Logical properties for C,

In what follows we will analyze some relevant logical properties@r. Monotonicity does not hold for

C,, as expected. As a counterexample consider the progtad (¢,1), (p < ¢,0.9) }. Then(p,0.9) €
C,(P), as there is an undefeated arguméntp, 0.9) on the basis of? for concluding(p, 0.9), with A

={ (p < ¢,0.9) }. However,(p,0.9) & C, (P U {(~p,1)}) (as no argument fofp, 0.9) could exist, as
condition 2 in Def. 3 would be violated). Moreover, cumulativity, idempotence and right-weakening do not

hold for C' , as shown in the following examples.

w!

Example 1 Operator C', does not satisfy idempotence. Consider progfam,,,.. given in Fig. 2. Note
thatg & C, (Psampie): there is an argumentA, ¢,0.7), with A ={ (¢ <+ 2,0.7), (z < p,0.7), (p,0.7) }
supporting(q, 0.7). In this case, argumentd, ¢, 0.7) is defeated by, ~¢, 0.8), withB={ (~ ¢ « r,0.8),
(r,0.8) }. There is a third argumen(C, ~,0.9), withC ={ (~r,0.9) }. Even though this argument defeats



(1) (~ye=p,~r,1) (5) (g < 2,0.7)
(@) (y, 1) (6) (z < p,0.7)
(3) (p,0.7) (7)  (~qg<r7,08)
4 (r,0.8) (8) (~7,0.9)

Figure 2: ProgranP,qmpi (See examples 1 and 2)

(B, ~q,0.8), it cannot be introduced as a defeater in the above analysis, as it would be in conflict with
argument(A, ¢,0.7), violating the non-contradiction consistency constraint in argumentation lines (since
(~y,1) and(y,0.7) would follow fromP[} . U AU B, whereP[] . stands for the certain knowledge

iN Psampie- The set of all warranted literals supported By, mpie iSW = { (p,0.7), (2,0.7), (~r,0.9) }.
Consider now the prograr®’ = Pyampie U W. Let us analyze whetheris warranted or not wrt?’. There

is an argument.A’, ¢,0.7), with A’ = {(q < 2,0.7)}, which is defeated b{3, ~¢, 0.8) (as before). This
defeater is defeated B¢’, ~r,0.9), withC’ = (). There are no more arguments to consider, and therefore
(¢,0.7) is warranted. Hencg € C (P') = C,(C, (Psampic)), and as shown above & C, (Psample)-

ThereforeC', does not satisfy idempotence.

Example 2 Operator C does not satisfy cumulativity. We must show that there exists a weighed literal
for some progran® such that if(Q,«) € C,(P), then(R,3) € C, (P U {(Q,a)}) does not imply
(R,B) € C_(P). Consider progranPs,mpi. in Fig. 2. As shown in Example 17,0.7) € C, (Psample )
and(q,0.7) € C, (Psampie U {(2,0.7)}). However(q,0.7) & C, (Psampic)- Hence cumulativity does not

hold forC, .

Example 3 OperatorC does not satisfy right weakening. Consider progr&gm,, .. in Fig. 2. Note that

(9,0.7) € C, (Psampic) @and (~7,0.9) € C,, (Psampic). Besides(~y — p,~r,1) € P, . However,
the conclusion of this certain rule itwarranted,i.e. (~y,0.7) € C (Psampic), SiNCe(y, 1) € Psrﬁmple

and thus there exists no argument with conclugiony, 0.7) (as it would violate condition 2 in Def. 3).

Proposition 14 summarizes the properties that holdfor Notice thatC' satisfies inclusion trivially
(by definition).

Proposition 14 The operatoC, satisfies inclusion, (Horn) supraclassicality Wit (i.e. C, (P) C C,(P))
and subclassical cumulativity.e. Py C P C C, (P1) impliesC  (P1) = C, (P2).

OperatorC  does not satisfy the properties of LL, CC, LA, RA, RN, RM and DR. In all cases this is
based on the impossibility of computing arguments satisfying these properties. Suitable counterexamples
can be found in [11].

5 Discussion. Related work

Research in logical properties for defeasible argumentation can be traced back to Betifethfg, 4]

and Vreeswijk [23]. In the context of his abstract argumentation systems, Vreeswijk showed that many
logical properties for non-monotonic inference relationships turned out to be counter-intuitive for argument-
based systems. Benferhdtal. [3] were the first who studied argumentative inference in uncertain and
inconsistent knowledge bases. They defined an argumentative consequence relatign&lmg into

account the existence of arguments favoring a given conclusion against the absence of arguments in favor of
its contrary. In contrast, the- relationship proposed in this paper takes into accountihele dialectical

analysis for arguments derivable from the program for any given goal.

In [3, 4] the authors also extend the argumentative relatigro prioritized knowledge bases, assessing
weights to conclusions on the basis of the-entailment relationship from possibilistic logic [14]. A direct
comparison to ouf- relationship is not easy since we are using a logic programming framework and not
general propositional logic, but roughly speaking whiletakes into account the inconsistency degree asso-
ciated with the whole knowledge base, our logic programming framework allows us to perform a dialectical
analysis restricted only to conflicting arguments related with the goal being solved.

The complexity of computing warranted beliefs can be better understood in the light of the logical
properties forC | presented in this paper. There are only three properties (inclusion, supraclassicality and
subclassical cumulativity) which hold for this operator. Next we will briefly discuss some of the relevant



properties which do not hold far'. In [20] some examples are informally presented to show that argumen-
tation systems should assign facts a special status, and therefore sbdudcumulative. In the particular
case of cumulativity (traditionally the most defended property associated with hon-monotonic inference),
we have shown that it does not hold f0r, even when warranted conclusions are assigned the epistemic
status of uncertain facts of the for(@, «), @ < 1, which provides an even stronger result than the one
suggested originally in [20].

Horn right weakening indicates that a certain rule of the f¢dh— X, 1) doesnot ensure that every
warranted argument fdtX, «) (with o < 1) implies that(Y, o) is also warranted. In fact, it can be the case
that the certain faqt~Y, 1) is presentin a given program, so that an argument for thelgeahnot be even
computed (as shown in Example 3). In a recent paper [5], Caminada & Amgoud identify this situation as a
particular anomaly in several argumentation formalismg. (19, 15]) and provide an interesting solution
in terms ofrationality postulatesvhich —the authors claim— should hold in any well-defined argumentative
system. In the case of P-DeLP the problem seems to require a different conceptualization, as the necessity
degreel of the rule(Y «— X, 1) is attached to the rule itself, and the necessity degree of the conclusion
Y dependon the necessity degreeof the antecedenX. As an example, consider the progrén= {
(~g < a,1), (a,0.7), (g < b,1), (b,0.4) }. In this case(a,0.7) and(b,0.4) are warranted conclusions.
However, we cannot warragtand~ g with necessity degrek In fact, only(~g,0.7) can be warranted. In
this respect, the behavior of strict rules (as used in most argumentation systems) seems to be different from
the behavior of certain rules in our framework.

6 Conclusions. Future work

In this paper we have shown that P-DeLP provides a useful framework for making a formal analysis of
logical properties in defeasible argumentation. We contend that a formal analysis of defeasible consequence
is mandatory to get an in-depth understanding of the behavior of argumentation frameworks, particularly
when used for modelling reasoning in intelligent agents. Expansion operatoiG, liked C, provide a
natural tool for characterizing that behavior, as well as useful criteria when developing new argumentation
frameworks and assessing their expressive power.

Our current research work in P-DeLP will follow two main directions: on the one hand, we are con-
cerned with characterizing differedegreesof non-monotonicity. We think that th€’, operator can be
used to better understand how complex non-monotonic systems behave. On the other hand, we will extend
the current formalization to include fuzzy constants and thus fuzzy unification features [2].
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