
ar
X

iv
:c

s.
A

I/
03

02
02

9
v1

20

 F
eb

 2
00

3

To appear in Theory and Practice of Logic Programming 1

Defeasible Logic Programming

An Argumentative Approach

Alejandro J. Garćıa Guillermo R. Simari

agarcia@cs.uns.edu.ar grs@cs.uns.edu.ar

Departament of Computer Science & Engineering

Universidad Nacional del Sur - Bah́ıa Blanca - Argentina

Abstract

The work reported here introduces Defeasible Logic Programming (DeLP), a formalism
that combines results of Logic Programming and Defeasible Argumentation. DeLP pro-
vides the possibility of representing information in the form of weak rules in a declarative
manner, and a defeasible argumentation inference mechanism for warranting the entailed
conclusions.

In DeLP an argumentation formalism will be used for deciding between contradictory
goals. Queries will be supported by arguments that could be defeated by other arguments.
A query q will succeed when there is an argument A for q that is warranted, i. e. the
argument A that supports q is found undefeated by a warrant procedure that implements
a dialectical analysis.

The defeasible argumentation basis of DeLP allows to build applications that deal with
incomplete and contradictory information in dynamic domains. Thus, the resulting ap-
proach is suitable for representing agent’s knowledge and for providing an argumentation
based reasoning mechanism to agents.

1 Introduction

Research in Nonmonotonic Reasoning, Logic Programming, and Argumentation

have provided important results seeking to develop more powerful tools for knowl-

edge representation and common sense reasoning. Advances in those areas are lead-

ing to important and useful results for other areas such as the development of

intelligent agents and multi-agent system applications.

The work reported here introduces Defeasible Logic Programming (DeLP), a for-

malism that combines results of Logic Programming and Defeasible Argumentation.

DeLP provides the possibility of representing information in the form of weak rules

in a declarative manner, and a defeasible argumentation inference mechanism for

warranting the entailed conclusions. These weak rules are the key element for in-

troducing defeasibility (Pollock, 1995) and they will be used to represent a relation

between pieces of knowledge that could be defeated after all things are considered.

We believe that common sense reasoning should be defeasible in a way that is not

explicitly programmed. Defeat should be the result of a global consideration of the

corpus of knowledge of the agent performing the inference. Defeasible Argumenta-

tion provides the tools for doing this.

2 Alejandro J. Garćıa and Guillermo R. Simari

Defeasible Argumentation is a relatively young area, but already mature enough

to provide solutions for other areas. Argumentative Systems are now being applied

for developing applications in legal systems, negotiation among agents, decision

making, etc, (Prakken & Vreeswijk, 2000; Chesñevar et al., 2000; Garćıa et al., 2000).

As we will show below, DeLP considers two kinds of program rules: defeasible

rules used for representing weak or tentative information, like “a mammal does not

fly”, denoted∼flies —< mammal , and strict rules used for representing strict (sound)

knowledge, like mammal ← dog , “a dog is a mammal”. Syntactically, the symbol

“—<” is all that distinguishes a defeasible rule from a strict one. Pragmatically, a

defeasible rule is used to represent defeasible knowledge, i. e., tentative information

that may be used if nothing could be posed against it.

Defeasible rules will add a new representational capability for expressing a weaker

link between the head and the body in a rule. A defeasible rule “Head —< Body” is

understood as expressing that “reasons to believe in the antecedent Body provide

reasons to believe in the consequent Head” (Simari & Loui, 1992). Strong nega-

tion is allowed in the head of program rules, and hence may be used to represent

contradictory knowledge.

Although strong negation has been introduced in several extensions of Logic

Programming, many of those extensions handle contradictory programs in a way

we feel could be improved. DeLP incorporates an argumentation formalism for the

treatment of contradictory knowledge. This formalism allows the identification of

the pieces of knowledge that are in contradiction. A dialectical process is used

for deciding which information prevails. In particular, the argumentation based

definition of the inference relation makes it possible to incorporate a treatment

of preferences in an elegant way. In DeLP a query q will succeed when there is

an argument A for q that is warranted. Intuitively, an argument is a minimal set

of rules used to derive a conclusion. The warrant procedure involves looking for

counter-arguments that could defeat A.

Donald Nute in (Nute, 1994) remarks “An inference is defeasible if it can be

blocked or defeated in some way”. Weak rules provide the locus where the blocking

or defeating might occur. A query q will succeed if a supporting argumentA for q is

not defeated. In order to establish whether A is a non-defeated argument, argument

rebuttals or counter-arguments that could be defeaters for A are considered, i. e.,

counter-arguments that by some criterion, are preferred to A. Our defeaters will

take the form of arguments, therefore defeaters for the defeaters may exist. In this

manner, starting with an argument A for a query q, a dialectical analysis it will

consider all the defeaters for A, and then the defeaters for each defeater, and so on.

DeLP provides a warrant procedure that implements that dialectical analysis.

Thus, a query q will be warranted, if the argument A that supports q is found

undefeated by the warrant procedure. During the dialectical analysis certain con-

straints are imposed for averting problematic situations such as producing an infi-

nite sequence of defeaters. Thus, DeLP can manage defeasible reasoning and handle

contradictory programs, allowing the representation of defeasible and non-defeasible

knowledge. We will also discuss briefly in this paper how to extend DeLP for con-

sidering default negation.

Defeasible Logic Programming An Argumentative Approach 3

The resulting approach is suitable for representing agent’s knowledge and for pro-

viding an argumentation based reasoning mechanism to agents. In (Garćıa et al., 2000),

a particular application for a multi-agent system in the stock market domain has

been developed using DeLP. There, agents knowledge is specified in the form of a

defeasible logic program, and agents reason using DeLP in order to reach decisions

about buying or selling stocks.

As Brewka states in (Brewka, 2001a), argumentation plays a central role in the

communication of human and artificial agents and is an ubiquitous task in profes-

sional and everyday life. We agree with Brewka that it is necessary to “...take not

only the logical, but also the procedural character of argumentation seriously...”. It

is remarkable that Nute’s Defeasible Logic (Nute, 1994), recent extensions to de-

feasible logic (Antoniou et al., 2000a; Antoniou et al., 1998), and several defeasible

argumentation formalisms (Loui, 1997a; Prakken & Sartor, 1997; Vreeswijk, 1997),

also consider defeasible rules for representing knowledge. However, in most of these

formalisms, a priority relation among rules must be explicity given with the program

in order to decide between rules with contradictory consequents.

This work is organized as follows. Section 2 introduces the language of DeLP

without default negation. In Section 3 the defeasible argumentation formalism is

developed. and two comparison criteria are introduced. A dialectical procedure for

obtaining a warrant conclusion is developed in Section 5. In Section 6 DeLP with

default negation is considered. Implementation issues and applications are described

in Section 7, and finally in Section 8 the related work is surveyed.

2 The Language

The DeLP language is defined in terms of three disjoint sets: a set of facts, a set

of strict rules and a set of defeasible rules. In the language of DeLP a literal “L”

is a ground atom “A” or a negated ground atom “∼A”, where “∼” represents the

strong negation. Hence, literals have no variables.

Definition 2.1 (Fact)

A fact is a literal, i. e. a ground atom, or a negated ground atom.

Definition 2.2 (Strict Rule)

A Strict Rule is an ordered pair, denoted “Head ← Body”, whose first member,

Head , is a literal, and whose second member, Body, is a finite non-empty set of

literals. A strict rule with the head L0 and body {L1, . . . ,Ln} can also be written

as: L0 ← L1, . . . ,Ln (n > 0).

Definition 2.3 (Defeasible Rule)

A Defeasible Rule is an ordered pair, denoted “Head —< Body”, whose first member,

Head , is a literal, and whose second member, Body, is a finite non-empty set of

literals. A defeasible rule with head L0 and body {L1, . . . ,Ln} can also be written

as: L0 —< L1, . . . ,Ln (n > 0.)

The syntax of strict rules correspond to basic rules (Lifschitz, 1996), but we call

them ‘strict’ to emphasize the difference with the ‘defeasible’ ones. Observe that

4 Alejandro J. Garćıa and Guillermo R. Simari

strong negation may be used in the head of the rules. Some examples of strict rules

are: “∼innocent ← guilty”, “dead ← ∼alive”.

Syntactically, the symbol “—<” is all that distinguishes a defeasible rule from a

strict one. Pragmatically, a defeasible rule is used to represent defeasible knowledge,

i. e., tentative information that may be used if nothing could be posed against it.

Thus, whereas a strict rule is used to represent non-defeasible information such as:

“bird ← penguin” which expresses that “all penguins are birds”, a defeasible rule

is used to represent defeasible knowledge such as “flies —< bird” which expresses

that: “reasons to believe that it is a bird provide reasons to believe that it flies”, or

“birds are presumed to fly” or “usually, a bird can fly.”

The symbols “ —< ” and “← ” denote meta-relations between sets of literals, and

have no interaction with language symbols. In particular, there is no contraposition

for program rules. In our examples, we will follow standard typographic conventions

of Logic Programming extending them conveniently for representing DeLP rules.

Program rules have a non-empty body. Observe that a strict rule with an empty

body can be represented as a fact, but a defeasible rule with an empty body is not

a fact. For example: “a —< ” would express that “there are (defeasible) reasons to

believe in a”, and since this information is defeasible, then a could not be a fact.

A defeasible rule with an empty body was introduced in several approaches and is

called a presumption (Nute, 1988; Garćıa et al., 1998; Garćıa, 2000). For technical

reasons we will develop the core of DeLP without considering presumptions, and

they will be added as an extension to DeLP (see Section 6).

Defeasible rules are not default rules. In a default rule ϕ : ψ1 . . . , ψn/χ the justi-

fication part ψ1 . . . , ψn is a consistency check that contributes in the control of the

applicability of the rule. A defeasible rule represents a weak connection between

head and body of the rule. The effect of a defeasible rule comes from a dialecti-

cal analysis, made by the inference mechanism, which involves the consideration

of arguments and counter-arguments where that rule is included. Therefore, in a

defeasible rule there is no need to encode any particular check. The advantage of

this is notorious when the beliefs supported by knowledge represented by default

rules change. The changes will lead to re-representing the new beliefs by modifying

the justification part of those rules, which could lead to a re-representation cascade

effect, see (Brewka & Eiter, 2000). Changes in the knowledge represented by defea-

sible rules, in general, is reflected with the sole addition of new defeasible rules to

the representation. Therefore, if the knowledge base changes frequently, defeasible

rules are a better alternative.

In Example 8.1, we will introduce a more illustrative example comparing de-

faults and defeasible rules. The interested reader is referred to (Nute, 1994) where

a comparison with other nonmonotonic theories is given.

Definition 2.4 (Defeasible Logic Program)

A Defeasible Logic Program P, abbreviated de.l.p., is a possibly infinite set of facts,

strict rules and defeasible rules. In a program P, we will distinguish the subset Π

of facts and strict rules, and the subset ∆ of defeasible rules. When required, we

will denote P as (Π,∆).

Defeasible Logic Programming An Argumentative Approach 5

Strict and defeasible rules are ground. However, following the usual conven-

tion (Lifschitz, 1996), some examples will use “schematic rules” with variables.

Given a “schematic rule” R, Ground(R) stands for the set of all ground instances

of R. Given a de.l.p. P with schematic rules, we define (Lifschitz, 1996):

Ground(P) =
⋃

R∈P

Ground(R)

In order to distinguish variables from other elements of a schematic rule, we will

denote variables with an initial uppercase letter.

In DeLP there are four possible answers for a query: yes, no, undecided, or

unknown (see Definition 5.3). Next, we will introduce some examples of defeasible

logic programs, anticipating what will be the results of using our approach. In the

following sections we will explain how the mentioned results are obtained.

Example 2.1

Here follows the de.l.p. P2.1=(Π,∆), where sets Π and ∆ have been separated for

convenience of the presentation:

Π=

bird(X) ← chicken(X)

bird(X) ← penguin(X)

∼flies(X) ← penguin(X)

chicken(tina)

penguin(tweety)

scared(tina)

∆ =

flies(X) —< bird(X)

∼flies(X) —< chicken(X)

flies(X) —< chicken(X), scared(X)

nests in trees(X) —< flies(X)

As will show in the following sections, in DeLP the answer for flies(tina) will be

yes, whereas the answer for ∼flies(tina) will be no. The answer for flies(tweety)

will be no, whereas the answer for ∼flies(tweety) will be yes.

Example 2.2

Consider the following de.l.p. adapted from (Prakken & Vreeswijk, 2000):

P2.2=

has a gun(X) —< lives in chicago(X)

∼has a gun(X) —< lives in chicago(X), pacifist(X)

lives in chicago(nixon)

pacifist(X) —< quaker(X)

∼pacifist(X) —< republican(X)

quaker(nixon)

republican(nixon)

As we will show in Example 5.4, the expected result will be obtained: the answer

for pacifist(nixon) will be undecided, and the answer for ∼pacifist(nixon) will

be also undecided. In a case like this, other approaches have the problem of

the propagation of that “indecision”, and the answer for has a gun(nixon) is also

undecided. However, this result will not happen in DeLP (see Example 5.5).

Example 2.3

Consider the following de.l.p. P2.3= (Π,∆):

6 Alejandro J. Garćıa and Guillermo R. Simari

Π=

h ← a

∼h ← c

b

d

∆ =

{

a —< b

c —< d

}

In several approaches the literal a is accepted as proved from P2.3 because there

is no rule with “∼a” in its head, so no rule that contradicts “a —< b” can be found.

However, observe that from literals “a” and “c” and the strict rules “h ← a”

and “∼h ← c” two contradictory literals can be derived. In DeLP, this kind of

contradiction through strict rules will be discovered and the answer for the literals

“a” and “c” will be undecided. See section 8 for further details.

Example 2.4

The following de.l.p. represents some information in the stock market domain:

P2.4=

buy stock(T) —< good price(T)

∼buy stock(T) —< good price(T), risky company(T)

risky company(T) —< in fusion(T ,Y)

risky company(T) —< closing(T)

∼risky company(T) —< in fusion(T ,Y), strong(Y)

good price(acme)

in fusion(acme, steel)

strong(steel)

As we will explain next, here the answer for buy stock(acme) will be yes.

We will define next what constitute a defeasible derivation. In the following sec-

tions a proof procedure based on a defeasible argumentation formalism will be

defined.

Definition 2.5 (Defeasible Derivation)

Let P= (Π,∆) be a de.l.p. and L a ground literal. A defeasible derivation of L

from P , denoted P |∼ L, consists of a finite sequence L1,L2, . . . ,Ln = L of ground

literals, and each literal Li is in the sequence because:

(a) Li is a fact in Π, or

(b) there exists a rule Ri in P (strict or defeasible) with head Li and body

B1,B2, . . . ,Bk and every literal of the body is an element Lj of the sequence

appearing before Li (j < i .)

Given a de.l.p. P, a derivation for a literal L from P is called ‘defeasible’, because

as we will show next, there may exist information in contradiction with L that will

prevent the acceptance of L as a valid conclusion. If the program P is expressed

using schematic rules, then Ground(P) is used for obtaining defeasible derivations.

Example 2.5

Defeasible Logic Programming An Argumentative Approach 7

Considering Example 2.1, the sequence:

chicken(tina), bird(tina),flies(tina),

is a defeasible derivation for the literal “flies(tina)”, obtained from the following

set of rules in P2.1: { (bird(tina) ← chicken(tina)), (flies(tina) —< bird(tina)) }1.

Observe that from P2.1, there exists also a defeasible derivation for ∼flies(tina)

from the sequence: chicken(tina),∼flies(tina).

Observation 2.1

Defeasible derivation is monotonic, i. e., let P be a de.l.p. and R be a set of program

rules, if h has a defeasible derivation from P , then h has a defeasible derivation from

P ∪R.

Observation 2.2

If a program P has no facts, then no defeasible derivation can be obtained.

Given a literal L, there could be more than one defeasible derivation for L. Ob-

serve also, that a defeasible derivation could use both defeasible and strict rules,

or it could use only one kind of rule. In what follows, sometimes we will call strict

derivation, a derivation where only strict rules, and facts, are used. For instance,

the literal “∼flies(tweety)” has a strict derivation from P2.1. The formal definition

follows.

Definition 2.6 (Strict Derivation)

Let P be a de.l.p. and h a literal with a defeasible derivation L1,L2, . . . ,Ln = h.

We will say that h has a strict derivation from P, denoted P ` L, if either h is a

fact or all the rules used for obtaining the sequence L1,L2, . . . ,Ln are strict rules.

The symbol “ ” will be used to denote the complement of a literal with respect

to strong negation, i. e. p is ∼p, and ∼p is p. Two literals are contradictory if they

are complementary. Thus, flies(tina) and ∼flies(tina) are contradictory literals.

Definition 2.7 (Contradictory set of rules)

A set of rules is contradictory if and only if, there exists a defeasible derivation for

a pair of complementary literals from this set.

Observe that the de.l.p. of Example 2.1 is a contradictory set of rules because both

flies(tina) and ∼flies(tina) can be defeasibly derived, (see Example 2.5.) The same

happens to the de.l.p. of Example 2.4 for buy stock(acme) and ∼buy stock(acme).

The use of strong negation in program rules enriches language expressiveness, and

also allows to represent contradictory knowledge. In general, a useful defeasible logic

program will be a contradictory set of rules. However, the set Π of facts and strict

rules in a defeasible logic program P, which is used to represent non-defeasible

information, must posses certain internal coherence.

Observation 2.3

1 When required, parenthesis will be used for distinguishing one rule from another.

8 Alejandro J. Garćıa and Guillermo R. Simari

Note that the set Π of a de.l.p. corresponds to a logic program with strong negation.

If a contradictory set Π is used in a de.l.p. then the answer would be Lit , as in

Extended Logic Programming. Therefore, we will have the convention that in a

de.l.p. P the set Π is non-contradictory.

Although the set Π is assumed to be non-contradictory, P itself (i. e., Π ∪ ∆),

could be contradictory. It is only in this form that a de.l.p. may contain contradic-

tory information. Observe that the set Π of P2.1 is non-contradictory, whereas the

whole program P2.1 is contradictory: the literals “flies(tina)” and “∼flies(tina)”

have both a defeasible derivation from P2.1.

In a case like this, when contradictory goals could be defeasibly derived, a for-

malism for deciding between them is needed. DeLP uses a defeasible argumentation

formalism in order to perform such a task.

Strong negation was introduced in Extended Logic Programming (Gelfond & Lifschitz, 1990).

In this formalism, when a pair of contradictory literals is derived, the set Lit of all

literals is derived without considering any further analysis. Suppose that we regard

Example 2.1 above as an Extended Logic Program, by considering all its rules as

strict rules. This program would be an Extended Logic Program without “not”,

and clearly, from that program a pair of complementary literals (“flies(tina)” and

“∼flies(tina)”) could be derived. Therefore, the answer set calculated according

to (Gelfond & Lifschitz, 1990) is Lit .

For deciding between contradictory goals, other formalism use a priority rela-

tion among program rules that need to be included in the program (Nute, 1994;

Antoniou et al., 2000a; Antoniou et al., 1998; Prakken & Sartor, 1997; Kakas et al., 1994;

Dimopoulos & Kakas, 1995) (see Section 8 below.)

In DeLP, no priority relation is needed for deciding between contradictory goals.

This characteristic maintains the declarative nature of the knowledge represented

in DeLP, i. e. the interaction among the pieces of knowledge is not expressed in

the language in any way but as a result of the influence of the whole corpus of the

agent’s knowledge. For that reason, the burden of the defeasible inference falls upon

the language processor, i. e. our system, which figures out the interactions, instead

of on the knowledge encoder, i. e., the programmer. The programmer does not have

to evoke the behavior of the representation in order to add procedural control to

the defeasible rules. However, as it will be shown in Section 3.2.2, priorities between

defeasible rules could be used in DeLP as an alternative comparison approach.

3 Defeasible Argumentation

In this section, a defeasible argumentation formalism will be introduced. This for-

malism evolved from (Simari & Loui, 1992; Simari et al., 1994b; Garćıa et al., 1998)

into the DeLP framework. The central notion of the formalism is the notion of ar-

gument. Informally, an argument is a minimal and non-contradictory set of rules

used to derive a conclusion. In DeLP, answers to queries will be supported by an

argument. Thus, although a de.l.p. could be contradictory, answers to queries will

be supported by a non-contradictory set of rules. The formal definition follows.

Defeasible Logic Programming An Argumentative Approach 9

Definition 3.1 (Argument Structure)

Let h be a literal, and P=(Π,∆) a de.l.p.. We say that 〈A, h〉 is an argument

structure for h, if A is a set of defeasible rules of ∆, such that:

1. there exists a defeasible derivation for h from Π ∪ A,

2. the set Π ∪ A is non-contradictory, and

3. A is minimal: there is no proper subset A′ of A such that A′ satisfies condi-

tions (1) and (2).

In short, an argument structure 〈A, h〉, or simply an argument A for h, is a min-

imal non-contradictory set of defeasible rules, obtained from a defeasible deriva-

tion for a given literal h. The literal h will also be called the ‘conclusion’ sup-

ported by A. This notion was adapted from the argument structure definition given

in (Simari & Loui, 1992). Note that strict rules are not part of an argument struc-

ture.

Example 3.1

Consider the defeasible logic program of Example 2.1. The literal “∼flies(tina)” is

supported by the following argument structure:

〈{∼flies(tina) —< chicken(tina)},∼flies(tina)〉

whereas the literal “flies(tina)” has two argument structures that support it:

〈{flies(tina) —< bird(tina)},flies(tina)〉

〈{flies(tina) —< chicken(tina), scared(tina)},flies(tina)〉

Observe that in DeLP the construction of argument structures is nonmonotonic.

That is, adding facts or strict rules to the program may cause some argument

structures to be invalidated because they become contradictory. For example, con-

sider the program P=(Π,∆), where Π={a}, and ∆={h —< a}. From P there is an

argument structure 〈A, h〉=〈{h —< a}, h〉. However, from Π ∪ {∼h}, 〈A, h〉 is not

longer an argument structure because the set Π ∪ {∼h} ∪ {h —< a} is a contradic-

tory set. In other approaches to defeasible argumentation, argument construction is

monotonic, and contradictory arguments are considered ‘self-defeating’ arguments,

that is, arguments that defeat themselves. Condition 2 of the previous definition

prevents the occurrence of self-defeating argument structures. We will come back

to this issue in Section 4.1.

Observation 3.1

If there exists a strict derivation for q, then there exists a unique argument structure

for q: 〈∅, q〉. This is so because there exists a defeasible derivation for q from Π ∪

∅, Π ∪ ∅ is not contradictory by Observation 2.3, and there is no subset of ∅.

The argument structure 〈∅, q〉 is unique because by condition 3 of Definition 3.1

(minimality) no superset of ∅ can be an argument structure. For example, the literal

“∼flies(tweety)” has a strict derivation from P2.1, so 〈∅,∼flies(tweety)〉 is its the

unique argument structure.

10 Alejandro J. Garćıa and Guillermo R. Simari

It is interesting to note, that if q has a strict derivation, then q has a derivation

from Π; hence, q has a defeasible derivation from Π ∪ A, for any set A of defeasible

rules (see Observation 2.1.) Therefore, if there exists a defeasible derivation for q

from Π ∪ A, for some set A, then Π ∪ A will be contradictory, and no argument

structure for q could be obtained, because condition 2 of the definition of argument

structure will not be satisfied.

Definition 3.2 (Sub-argument structure)

An argument structure 〈B, q〉 is a sub-argument structure of 〈A, h〉 if B ⊆ A.

It is important to note that the union of arguments is not always an argument.

That is, given two argument structures 〈A, h〉 and 〈B, q〉, the set A ∪ B could be

improper for being used as an argument, because A ∪ B could be not minimal or

A∪ B ∪Π could be contradictory (see the following example.)

Example 3.2

Consider the de.l.p.:

b —< c b —< d h ← h1, h2

c d p ← h1

h1 ← b h2 ← b ∼p ← h2

The following argument structures can be obtained: 〈A1, h1〉 = 〈{b —< c}, h1〉 and

〈A2, h2〉 = 〈{b —< d}, h2〉. Consider now the set A = A1 ∪A2 = {(b —< c), (b —< d)}.

From Π ∪ A there exists a defeasible derivation for h, however, 〈A, h〉 is not an

argument structure because Π ∪ A is contradictory since p and ∼p have a defeasible

derivation from Π ∪ A. Observe also that A is not the minimal set of defeasible

rules that provides an argument structure for h because A1 is a proper subset of

A, and 〈A, h〉 is an argument structure.

As shown in Example 3.1, it is possible to have argument structures for con-

tradictory literals. Thus, when considering a literal q, supported by argument A,

arguments that contradict A could exist. In that situation it is clear that it would

be interesting to have a preference criterion for deciding among arguments and

their counter-arguments. This issue will be explored in the next section, but first,

we will introduce a graphical representation for arguments that will be used in what

follows.

Arguments will be depicted as triangles. The upper vertex of the triangle will be

labeled with the argument’s conclusion, and the set of defeasible rules in the argu-

ment will be associated with the triangle itself. Sub-arguments will be represented

as smaller triangles contained in the triangle which corresponds to the main argu-

ment at issue. Figure 1 shows the graphical representation of an argument 〈A, h〉,

and one of its sub-arguments 〈B, q〉.

3.1 Rebuttals or Counter-Arguments

In DeLP, answers to queries will be supported by arguments. However, an argument

may be defeated by other arguments. Informally, a query q will succeed if the

Defeasible Logic Programming An Argumentative Approach 11

�
�
�
�
�
��

B
B

B
B
B

BB
h

A

�
��

B
BB

q

B

Fig. 1. An argument 〈A, h〉, and a sub-argument 〈B, q〉

supporting argument for it is not defeated. In order to establish whether A is a

non-defeated argument, argument rebuttals or counter-arguments that could be

defeaters for A are considered, i. e., counter-arguments that for some criterion, are

preferred to A. Since counter-arguments are arguments, there may exist defeaters

for them, and so on. That suggests a dialectical analysis, that will be formally

introduced in the next sections. Here, the notion of rebuttal or counter-argument

is introduced.

Definition 3.3 (Disagreement)
Let P=Π ∪ ∆ be a de.l.p.. We say that two literals h and h1 disagree, if and only

if the set Π ∪ {h, h1} is contradictory.

Two complementary literals p and ∼p trivially disagree since for any set Π,

{p,∼p}∪Π is contradictory. Furthermore, two literals that are not complementary

can also disagree. For example given Π = {(∼h ← b), (h ← a)}, the literals a

and b disagree because Π ∪ {a, b} is contradictory. We will show below how this

notion of disagreement will allow us to find direct and indirect conflicts between

arguments.

Definition 3.4 (Counter-argument)
We say that 〈A1, h1〉 counter-argues, rebutts, or attacks 〈A2, h2〉 at literal h, if and

only if there exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that h and h1 disagree.

If 〈A1, h1〉 counter-argues 〈A2, h2〉 at literal h, then h is called a counter-argument

point, and the sub-argument 〈A, h〉 is called the disagreement sub-argument. Fig-

ure 2-(left) gives a graphical representation of an argument and one of its counter-

arguments in the conditions of Definition 3.4.

Example 3.3

Continuing with Example 3.1, 〈{∼flies(tina) —< chicken(tina)},∼flies(tina)〉 is a

counter-argument for 〈{flies(tina) —< bird(tina)},flies(tina)〉 and vice versa. Note

that in this particular case, the disagreement sub-argument is the argument itself.

Consider now the argument structure 〈A4,nests in trees(tina)〉, where

A4 =

{

nests in trees(tina) —< flies(tina)

flies(tina) —< bird(tina)

}

The argument structure 〈{∼flies(tina) —< chicken(tina)},∼flies(tina)〉 is a counter-

argument for 〈A4,nests in trees(tina)〉 attacking an inner point, i. e., the counter-

argument point is flies(tina).

12 Alejandro J. Garćıa and Guillermo R. Simari

As shown in the previous Example, a counter-argument 〈A1, h1〉 for 〈A2, h2〉,

can attack directly the conclusion h2 of 〈A2, h2〉, or can attack an inner point h

of 〈A2, h2〉. Hence, we will distinguish between a “direct” attack and an “indirect”

attack. Figure 2 shows both cases.

�
�
�
�
�
��

B
B

B
B
B

BB

h2

A2

�
��

B
BB

h

A
�
�
�
�
�
��

B
B
B

B
B
BB

h1

A1

���������

�
�
�
�
�
��

B
B
B

B
B

BB

h4

A4

�
�
�
�
�
��

B
B

B
B

B
BB

h3

A3

Fig. 2. Indirect attack (left) and direct attack (right)

It is interesting to remark the following property of the counter-argument notion.

If 〈A3, h3〉 is a counter-argument for 〈A4, h4〉 and the counter-argument point is h4

(direct attack) then 〈A4, h4〉 is also a counter-argument for 〈A3, h3〉 (see Figure 2-

right.) In the case that 〈A1, h1〉 is a counter-argument for 〈A2, h2〉 attacking an inner

point h, with 〈A, h〉 as the disagreement sub-argument, then 〈A, h〉 is a counter-

argument for 〈A1, h1〉 (see Figure 2-left.)

In the example above, the argument and its counter-argument have complemen-

tary conclusions (flies(tina) and ∼flies(tina).) In the following example we show an

argument and a counter-argument supporting literals that are not complementary.

The disagreement arises through Π.

Example 3.4

Consider again P2.3=(Π,∆), Π= { (h ← a), b, d , (∼h ← c) } and ∆= { (a —< b),

(c —< d)}. From this program 〈{a —< b}, a〉 is a counter-argument for 〈{c —< d}, c〉,

because literals a and c disagree.

In Observation 3.1, we have shown that any literal q that has a strict derivation

is supported by 〈∅, q〉. The following proposition states that for any de.l.p. P, and

any literal q, an argument structure 〈∅, q〉 will not have any counter-arguments. In

other words, strictly derived literals can not be rebutted.

Proposition 3.1

There exists no possible counter-argument for an argument structure 〈∅, q〉.

Proof: Suppose that there exists a counter-argument 〈A, h〉 for 〈∅, q〉, then, A∪∅∪

Π should be a contradictory set, and therefore, A ∪ Π should be a contradictory

set. However, if A ∪ Π is a contradictory, then 〈A, h〉 is not an argument structure,

because condition 2 of the definition of argument would not hold.

While the proposition above shows that an argument structure like 〈∅, q〉 has no

counter-arguments, the following proposition states that 〈∅, q〉 can never be used

as a counter-argument for any other argument structure 〈A, h〉.

Defeasible Logic Programming An Argumentative Approach 13

Proposition 3.2

The argument structure 〈∅, q〉 cannot be a counter-argument for any argument

structure 〈A, h〉.

Proof: Suppose that there exists 〈A, h〉, such that 〈∅, q〉 is a counter-argument for

〈A, h〉. Then, A ∪ ∅ ∪Π is a contradictory set, and then A ∪ Π is a contradictory

set. However, if this is so, the set A could not be an argument, because condition 2

of the definition of argument would not hold.

Given an argument structure 〈A, h〉, there could be several counter-arguments

attacking different points in A, or different counter-arguments attacking the same

point in A. As we will show next, in order to verify whether an argument is non-

defeated, all of its associated counter-arguments B1, B2, . . ., Bk will be examined,

each of them being a (defeasible) potential reason for rejecting A. If any Bi is

(somehow) “better” than, or unrelated to, A, then Bi is a candidate for defeating

A. However, if the argument A is “better” than one Bi then Bi will not be taken

in consideration as a defeater A. This informal discussion shows the convenience of

introducing a preference order among arguments.

3.2 Comparing Arguments

The definition of a formal criterion for comparing arguments is a central prob-

lem in defeasible argumentation. Existing formalisms have adopted different so-

lutions. Abstract argumentation systems usually assume an ordering in the set

of all possible arguments (Dung, 1993b; Vreeswijk, 1997; Kowalski & Toni, 1996;

Bondarenko et al., 1997). For instance, in Dung’s approach, an argumentation frame-

work is a pair (Args , attack), where Args is the set of all possible arguments and

attack is a binary relation on Args . If (A,B) ∈ attack then argument A attacks

argument B .

In other formalisms, explicit priorities among program rules are given. Thus, the

conflict between two rules can be solved. This approach is used in d-Prolog (Nute, 1988),

Defeasible Logic (Nute, 1992), extensions of Defeasible Logic (Antoniou et al., 2000a;

Antoniou et al., 1998), and logic programming without negation as failure (Kakas et al., 1994;

Dimopoulos & Kakas, 1995). In (Prakken & Sartor, 1997) it is also possible to rea-

son (defeasibly) about priorities among rules.

An alternative is to use the specificity criterion (Poole, 1985), and no explicit

order among rules or arguments need to be given. Finally, other formalisms use no

comparison criterion (Gelfond & Lifschitz, 1990).

Next, we will introduce two criteria for comparing arguments. The first one based

on specificity, and the second one based on priorities among program rules.

3.2.1 Generalized Specificity

We will formally define a particular criterion called generalized specificity which

allows to discriminate between two conflicting arguments. Intuitively, this notion

of specificity favors two aspects in an argument: it prefers an argument (1) with

14 Alejandro J. Garćıa and Guillermo R. Simari

greater information content or (2) with less use of rules (more direct.) In other

words, an argument will be deemed better than another if it is more precise or

more concise (see the Example 3.5 below.)

The next definition characterizes the specificity criterion, defined first in (Poole, 1985)

and extended later to be used in defeasible argumentation (Simari & Loui, 1992;

Simari et al., 1994b). Here, it is adapted to fit in the DeLP framework. As stated

before, P |∼ h means that h has a defeasible derivation from P , and P ` h means

that h has a strict derivation from P.

Definition 3.5 (Specificity)

Let P=(Π,∆) be a de.l.p., and let ΠG be the set of all strict rules from Π (without

including facts.) Let F be the set of all literals that have a defeasible derivation from

P (F will be considered as a set of facts.) Let 〈A1, h1〉 and 〈A2, h2〉 be two argument

structures obtained from P. 〈A1, h1〉 is strictly more specific than 〈A2, h2〉 (denoted

〈A1, h1〉 � 〈A2, h2〉) if the following conditions hold:

1. For all H ⊆ F : if ΠG ∪H ∪A1 |∼ h1 and ΠG ∪H 6` h1,

then ΠG ∪H ∪A2 |∼ h2, and

2. there exists H ′ ⊆ F such that ΠG ∪ H ′ ∪A2 |∼ h2

and ΠG ∪ H ′ 6 ` h2, and ΠG ∪ H ′ ∪A1 6|∼ h1

As mentioned before, it is not possible to have a defeasible derivation for a literal

from a set of rules without facts. Therefore, from the set ΠG ∪A1 it is not possible to

have a defeasible derivation for h1. However, from ΠG ∪H ∪A1 it could be possible

because H is a set of literals (facts.) Thus, when ΠG ∪H ∪A1 |∼ h1 holds, we say

that the set H activates 〈A1, h1〉, or H is an activation set of 〈A1, h1〉.

Example 3.5

Consider the program P2.1 of Example 2.1, the argument structure

〈A1, h1〉= 〈{∼flies(tina) —< chicken(tina)},∼flies(tina)〉

is strictly more specific than 〈A2, h2〉= 〈{flies(tina) —< bird(tina)},flies(tina)〉 be-

cause 〈A1, h1〉 is ‘more direct’ than 〈A2, h2〉 (observe that 〈A2, h2〉 uses the strict

rule bird(tina) ← chicken(tina).) In this example every activation set H of 〈A1, h1〉

also activates 〈A2, h2〉, but the set H ′ = {bird(tina)} activates 〈A2, h2〉 but does

not activate 〈A1, h1〉. Using the same program, the argument structure

〈A3, h3〉= 〈{flies(tina) —< chicken(tina), scared(tina)},flies(tina)〉

will be preferred to 〈A1, h1〉, because 〈A3, h3〉 is based in more information (the

literals chicken(tina) and scared(tina)) than 〈A1, h1〉. Observe that every activation

set H of 〈A3, h3〉 contains the literals chicken(tina) and scared(tina), thus H actives

〈A1, h1〉. However, the set H ′ = {chicken(tina)} activates 〈A1, h1〉, and H ′ does not

activate 〈A3, h3〉. Therefore, 〈A3, h3〉 is strictly more specific than 〈A1, h1〉.

Definition 3.6 (Equi-Specificity)

Two arguments 〈A1, h1〉 and 〈A2, h2〉 are equi-specific, denoted 〈A1, h1〉 ≡ 〈A2, h2〉,

iff A1= A2, and the literal h2 has a strict derivation from Π∪ {h1}, and the literal

h1 has a strict derivation from Π ∪ {h2}.

Defeasible Logic Programming An Argumentative Approach 15

Lemma 3.1

Equi-specificity is an equivalence relation.

Proof: Trivial by definition.

The following proposition shows that strictly derived literals are ‘equi-specific’.

Proposition 3.3

If A1 = ∅ and A2 = ∅, then 〈A1, h1〉 ≡ 〈A2, h2〉

Proof: If A1 andA2 are empty, then A1= A2, Π ` h1 and Π ` h2. Hence, Π∪{h1} `

h2 and Π∪{h2} ` h1. Observe also that since Π is not contradictory, then Π∪{h1, h2}

is not contradictory.

Proposition 3.4

If two argument structures 〈A1, h1〉 and 〈A2, h2〉 are equi-specific then h1 and h2

cannot disagree.

Proof: If 〈A1, h1〉 ≡ 〈A2, h2〉, then A1= A2, and Π∪{h1} ` h2, and Π∪{h2} ` h1.

Suppose that h1 and h2 disagree, then the set Π ∪ {h1, h2} is contradictory. Since

Π∪ {h1} ` h2, then Π∪ {h1} is contradictory, and therefore, 〈A1, h1〉 cannot be an

argument structure because it does not satisfy condition 2 of argument definition.

3.2.2 Argument comparison using rule’s priorities

Some formalisms define explicit priorities among rules and use these priorities for

deciding between competing conclusions. The use of these priorities is usually em-

bedded in the derivation mechanism and competing rules are compared individually

during the derivation process. In such formalisms the derivation notion is bound to

one single comparison criterion.

In DeLP in order to decide between competing conclusions the arguments that

support the conclusions are compared. Thus, the comparison criterion is indepen-

dent of the derivation process, and could be replaced in a modular way. Next, we

will introduce a particular comparison criterion which uses a form of ordering the

rules by their priority as an example.

We will show how a comparison criterion between arguments based on rule pri-

orities can be formulated. We will assume that explicit priorities among defeasible

rules are given with the program. Since strict rules represent sound information,

there will be no priorities among them. Priorities will be allowed only between two

defeasible rules. As showed in Proposition 3.1, a literal that has a strict derivation

has no counter-argument. Therefore, implicitly, a strict derivation will be preferred

over other arguments that use defeasible rules. Many comparison criteria could be

defined. The priority based criterion defined below is but one example.

Definition 3.7

Let P be de.l.p. and “>” a preference relation explicitly defined among defeasible

rules. Given two argument structures 〈A1, h1〉 and 〈A2, h2〉, the argument 〈A1, h1〉

will be preferred over 〈A2, h2〉 if:

16 Alejandro J. Garćıa and Guillermo R. Simari

1. there exists at least one rule ra ∈ A1, and one rule rb ∈ A2, such that ra > rb ,

2. and there is no r ′

b ∈ A2, and r ′

a ∈ A1, such that r ′

b > r ′

a .

Example 3.6

Consider the following de.l.p.

P3.6=

buy stock(T) —< good price(T)

∼buy stock(T) —< risky company(T)

risky company(T) —< in fusion(T ,Y)

good price(acme)

in fusion(acme, steel)

And the priority:

buy stock(T) —< good price(T) < ∼buy stock(T) —< risky company(T)

Using the criterion of Definition 3.7, the argument structure
〈{

∼buy stock(acme) —< risky company(acme)

risky company(acme) —< in fusion(acme, steel)

}

,∼buy stock(acme)

〉

will be preferred over 〈{buy stock(acme) —< good price(acme)}, buy stock(acme)〉

A more sophisticated criterion could be obtained combining the two defined

above. For example, considering first generalized specificity, and if no argument

is preferred, then use the existing priorities.

4 Defeaters and Argumentation Lines

Given an argument structure 〈A1, h1〉, and a counter-argument 〈A2, h2〉 for 〈A1, h1〉,

these two arguments can be compared in order to decide which one prevails. Namely,

if the counter-argument 〈A2, h2〉 is better than 〈A1, h1〉 w.r.t the comparison crite-

rion used, then 〈A2, h2〉 will be called a proper defeater for A1. If neither argument

is better, nor worse, than the other, a blocking situation occurs, and we will say

that 〈A2, h2〉 is a blocking defeater for 〈A1, h1〉. If 〈A1, h1〉 is better than 〈A2, h2〉,

then 〈A2, h2〉 will not be considered as a defeater for 〈A1, h1〉.

Although a preference criterion is required for comparing arguments, the notion of

defeating argument can be formulated independently of the particular argument-

discriminating criterion that is being used. From now on, we will abstract away

from the comparison criterion, assuming there exists a comparison criterion among

arguments that we will denote “�”. For the examples in the rest of the paper we

will assume that “�” means “strictly more specific” as defined above.

Definition 4.1 (Proper Defeater)

Let 〈A1, h1〉 and 〈A2, h2〉 be two argument structures. 〈A1, h1〉 is a proper defeater

for 〈A2, h2〉 at literal h, if and only if there exists a sub-argument 〈A, h〉 of 〈A2, h2〉

such that 〈A1, h1〉 counter-argues 〈A2, h2〉 at h, and 〈A1, h1〉 � 〈A, h〉.

Observe that in the previous definition, the argument structure 〈A1, h1〉 is com-

pared with the disagreement subargument 〈A, h〉.

Defeasible Logic Programming An Argumentative Approach 17

Example 4.1

In Example 3.5, since 〈A1, h1〉 is a counter argument for 〈A2, h2〉, and 〈A1, h1〉�

〈A2, h2〉, then 〈A1, h1〉 is a proper defeater for 〈A2, h2〉. Observe that 〈A3, h3〉 is a

proper defeater for 〈A1, h1〉.

Definition 4.2 (Blocking Defeater)

Let 〈A1, h1〉 and 〈A2, h2〉 be two argument structures. 〈A1, h1〉 is a blocking defeater

for 〈A2, h2〉 at literal h, if and only if there exists a sub-argument 〈A, h〉 of 〈A2, h2〉

such that 〈A1, h1〉 counter-argues 〈A2, h2〉 at h, and 〈A1, h1〉 is unrelated by the

preference order to 〈A, h〉, i. e., 〈A1, h1〉 6� 〈A, h〉, and 〈A, h〉 6� 〈A1, h1〉.

Example 4.2

The Nixon Diamond provides the proverbial example of blocking defeaters. Consider

the de.l.p. P2.2 of Example 2.2. From P2.2, the following argument structures can

be obtained:

〈A1, h1〉= 〈{pacifist(nixon) —< quaker(nixon)}, pacifist(nixon)〉 and

〈A2, h2〉= 〈{∼pacifist(nixon) —< republican(nixon)},∼pacifist(nixon)〉.

The argument 〈A2, h2〉 is a blocking defeater for 〈A1, h1〉, and vice versa. As it

will be shown below, in DeLP the answer for the query ‘pacifist(nixon)’ will be

undecided.

Definition 4.3 (Defeater)

The argument structure 〈A1, h1〉 is a defeater for 〈A2, h2〉, if and only if either:

1. 〈A1, h1〉 is a proper defeater for 〈A2, h2〉; or

2. 〈A1, h1〉 is a blocking defeater for 〈A2, h2〉.

Thus, a defeater for an argument structure can be identified as proper or blocking.

As we will show below, this distinction will be considered by the warrant procedure.

It is interesting to note, that most argumentation formalisms make no distinction

between proper or blocking defeaters, and some of them only consider proper de-

featers. The following proposition shows that during the argumentation process it

is not possible to attack a subargument 〈A, h〉 with an argument 〈A1, h1〉 that is

equi-specific to 〈A, h〉.

Proposition 4.1

If 〈A1, h1〉 is a defeater (proper or blocking) for 〈A2, h2〉, and 〈A, h〉 is the corre-

sponding disagreement subargument, then it cannot be the case that 〈A1, h1〉 ≡

〈A, h〉.

Proof: Proposition 3.4 shows that if 〈A1, h1〉 ≡ 〈A, h〉, then h1 and h could not

disagree. Thus, 〈A1, h1〉 cannot be a counter-argument for 〈A2, h2〉 at h.

In order to establish whether an argument structure 〈A0, h0〉 is non-defeated, all

defeaters for 〈A0, h0〉 have to be considered. Suppose that 〈A1, h1〉 is a defeater for

〈A0, h0〉, since 〈A1, h1〉 is an argument structure, then defeaters for 〈A1, h1〉 may

exist, and so on. In this manner, a sequence of argument structures is created, where

each element of the sequence defeats its predecessor. We formalize this notion next.

18 Alejandro J. Garćıa and Guillermo R. Simari

Definition 4.4 (Argumentation Line)
Let P a de.l.p. and 〈A0, h0〉 an argument structure obtained from P. An argu-

mentation line for 〈A0, h0〉 is a sequence of argument structures from P , denoted

Λ = [〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉 〈A3, h3〉, . . .], where each element of the sequence

〈Ai , hi〉, i > 0, is a defeater of its predecessor 〈Ai−1, hi−1〉.

B
B
B
B
B
B

�
�

�
�
�
�

BB��

A0 A1 A2 A3 A4

h0 h1 h2 h3 h4

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�
�

�
�
�

������

������

������

������
BB BB BB BB�� �� �� ��

Fig. 3. Argumentation line

As defined above, an argumentation line could result in an infinite sequence of

arguments. However, in the following section we will impose some restrictions over

the argumentation lines and only finite sequences will be allowed.

In each argumentation line Λ = [〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉 〈A3, h3〉, . . .], the argu-

ment 〈A0, h0〉 is supporting the main query h0, and every argument 〈Ai , hi〉 defeats

its predecessor 〈Ai−1, hi−1〉. Then, 〈A0, h0〉 becomes a supporting argument for h0,

〈A1, h1〉 an interfering argument, 〈A2, h2〉 a supporting argument, 〈A3, h3〉 an in-

terfering one, and so on. Thus, an argumentation line can be split in two disjoint

sets: ΛS of supporting arguments, and ΛI of interfering arguments.

Definition 4.5 (Supporting and Interfering argument structures)
Let Λ = [〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉 〈A3, h3〉, . . .] an argumentation line, we define

the set of supporting argument structures ΛS= { 〈A0, h0〉, 〈A2, h2〉, 〈A4, h4〉, . . . },

and the set of interfering argument structures ΛI = {〈A1, h1〉, 〈A3, h3〉, . . .}.

Given an argument structure 〈A0, h0〉, there can be many defeaters for 〈A0, h0〉,

and each of them will generate a different argumentation line. Observe also, that in

these argumentation lines any of the arguments could have more than one defeater

generating more argumentation lines starting with 〈A0, h0〉.

Example 4.3

Consider a program P where 〈A1, h1〉 defeats 〈A0, h0〉, and 〈A2, h2〉 also defeats

〈A0, h0〉. Up to this point there are two argumentation lines. Now suppose that

〈A3, h3〉 defeats 〈A1, h1〉, and that both 〈A4, h4〉 and 〈A5, h5〉 defeat 〈A2, h2〉, then

there are several argumentation lines starting with 〈A0, h0〉, here we show three of

them:

Λ1 = [〈A0, h0〉, 〈A1, h1〉, 〈A3, h3〉]

Λ2 = [〈A0, h0〉, 〈A2, h2〉, 〈A4, h4〉]

Λ3 = [〈A0, h0〉, 〈A2, h2〉, 〈A5, h5〉]

Therefore, a process that considers all possible argumentation lines is needed. Be-

fore defining such a process, we will introduce some restrictions over argumentation

lines.

Defeasible Logic Programming An Argumentative Approach 19

4.1 Acceptable Argumentation Lines

In this section we will show several undesirable situations that may arise in an

argumentation line leading to an infinite sequence of defeaters. We will then impose

certain constraints over the argumentation lines in order to avoid these problematic

situations. Some of these situations were reported first in (Simari et al., 1994b).

In the related literature, an argument structure 〈A, h〉 is said to be “self-defeating”

if 〈A, h〉 is a defeater for itself. If 〈A, h〉 is a self-defeating argument structure then

an argumentation line starting with 〈A, h〉 will be infinite (see Figure 4.)

B
B
B
B
B
B

�
�
�

�
�
�

BB��

A A A A

h h h h

. . .

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B

�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�
�

������

������

������
BB BB BB�� �� ��

Fig. 4. Infinite argumentation line with a self defeating argument

Many approaches of defeasible argumentation have to deal with self-defeating

arguments. As stated next, arguments in DeLP will never be self-defeating.

Proposition 4.2

In DeLP no argument structure can be self-defeating.

Proof: Assume that 〈A, h〉 is self-defeating, then 〈A, h〉 would be a defeater for

itself, and there should exist a counter-argument point q in A such that Π∪ {h, q}

is contradictory. Therefore Π ∪ A would be contradictory, and 〈A, h〉 would not be

an argument structure.

Another problematic situation, mentioned by Henry Prakken in (Prakken & Vreeswijk, 2000),

are reciprocal defeaters. This happens when a pair of arguments defeat each other.

Example 4.4 and Figure 5 shows that case: 〈A2, d〉 defeats 〈A1, b〉, attacking the

subargument 〈B,∼d〉, but 〈A1, b〉 also defeats 〈A2, d〉 attacking the subargument

〈A,∼b〉.

B
B
B
B
B
B

�
�

�
�
�
�

BB��

HHHHHH

A2 A1

A B

d b

∼b ∼d

B
B
B
B
B
B

�
�
�

�
�
�

������
BB��

Fig. 5. Reciprocal defeaters

Example 4.4

Consider the following de.l.p.: { (d —< ∼b, c), (b —< ∼d , a), (∼b —< a), (∼d —< c),

(a), (c) }. The argument 〈A2, d〉=〈{(d —< ∼b, c), (∼b —< a)}, d〉 is a proper defeater

for 〈A1, b〉=〈{(b —< ∼d , a), (∼d —< c)}, b〉, and vice versa. Observe that 〈A2, d〉 is

20 Alejandro J. Garćıa and Guillermo R. Simari

strictly more specific than the subargument 〈{∼d —< c},∼d〉 of 〈A1, b〉, and 〈A1, b〉

is strictly more specific than 〈{∼b —< a},∼b〉.

Clearly, this situation is undesirable as it leads to the construction of an infi-

nite sequence of arguments. Therefore, reciprocal defeaters must be detected and

avoided. The analysis prompted by Henry Prakken’s remark led to investigate other

types of undesirable situations in argumentation.

A circular argumentation is obtained when an argument structure is reintroduced

again in an argumentation line to defend itself. Figure 6 shows an example of circular

argumentation. There, the same argument A is reintroduced down the line as a

supporting argument for itself leading to an infinite argumentation line. Circular

argumentation was discussed first in (Simari et al., 1994b) as a particular case of

fallacious argumentation.

B
B
B
B
B
B

�
�

�
�
�
�

BB��

A B C D A

W X Y Z W

∼r ∼p ∼q ∼s ∼r

p q s r p
. . .

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�
�

�
�
�

������

������

������

������
BB BB BB BB�� �� �� ��

Fig. 6. Circular argumentation

In order to avoid circular argumentation we need to impose the condition that

no argument can be reintroduced in the same argumentation line. However, a more

subtle case of circular argumentation happens with the reintroduction of a subar-

gument. Figure 7 shows this situation: argument B is a defeater for A, andW is the

disagreement sub-argument. Later in the line, argument W could be reintroduced

as a defeater, allowing the reintroduction of B. Although the cycle can be detected

and broken when B is reintroduced, the fallacious situation is the reintroduction of

a subargument that was defeated earlier in the line.

B
B
B
B
B
B

�
�

�
�
�
�

BB��

A B C D

W X Y Z W

∼r ∼p ∼q ∼s

p q s ∼p p
. . .

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

������

������

������
BB BB BB BB�� �� �� ��

Fig. 7. Circular argumentation with a sub-argument

A different, but also undesirable, situation is shown in Figure 8. There, the same

argument A becomes both a supporting and an interfering argument of itself. This

situation arises because the supporting argument C has a subargument Z for the

literal r , which is contradictory with arguing in favor of ∼r (argument A.) The

Defeasible Logic Programming An Argumentative Approach 21

introduction of an argument like C should be avoided in a sound argumentation

line. Clearly, there should be agreement among supporting arguments (respectively

interfering) in any argumentation line. This is expressed formally with the notion

of argument concordance as proposed in (Simari et al., 1994b) and recalled next.

Definition 4.6 (Concordance)

Let P=(Π,∆) be a de.l.p.. Two arguments 〈A1, h1〉 and 〈A2, h2〉 are concordant

iff the set Π ∪ A1 ∪ A2 is non-contradictory. More generally, a set of argument

structures {〈Ai , hi〉}ni=1 is concordant iff Π ∪
⋃n

i=1Ai is non-contradictory.

B
B
B
B
B
B

�
�

�
�
�
�

BB��

A B C A

X Y Z X

∼r ∼p ∼q ∼r

p q r p
. . .

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

������

������

������
BB BB BB�� �� ��

Fig. 8. Contradictory argumentation line

In the case shown in Figure 8, the cycle could be detected and broken disallowing

the reintroduction of argument A. However, the fallacious move is the use of argu-

ment C that makes the set of supporting arguments non-concordant. Observe that

the status of the first argument of the line will change depending on which criterion

we use: on one hand, if we allow the use of C, and just forbid the reintroduction of

A, the first argument in the line would not be defeated; on the other hand, if C is

forbidden, the first argument of the line will be defeated.

Therefore, we will establish the condition that the set of supporting arguments

of an argumentation line must be concordant, and the same must hold for the set

of interfering arguments. Thus, the introduction of argument C in the example of

Figure 8 will not be allowed.

A different ill-formed situation corresponds to the use of a blocking defeater to

defeat a blocking defeater. Consider the following de.l.p.:

dangerous(X) —< tiger(X) tiger(hobbes)

∼dangerous(X) —< baby(X) baby(hobbes)

∼dangerous(X) —< pet(X) pet(hobbes)

Here, A1= { ∼dangerous(hobbes) —< baby(hobbes) } supports ∼dangerous(hobbes).

The argument A2= {dangerous(hobbes) —< tiger(hobbes) } is a blocking defeater

for the argument A1, and A3={ ∼dangerous(hobbes) —< pet(hobbes) } is a blocking

defeater for A2. The following argumentation line may be obtained: [A1, A2, A3].

Observe that although A2 is a defeater for A3, A2 is not introduced again because

it was already used in the line.

If the argumentation line [A1,A2, A3] is accepted, thenA3 defeatsA2, reinstating

A1. However, a blocking argumentA3 is being used for defeating a blocking defeater

A2, but A2 was already blocked by A1. This is equivalent to accepting that in a

blocking situation having two arguments for “∼dangerous(hobbes)” is preferred

over having just one argument for the contrary. In order to avert this problem,

22 Alejandro J. Garćıa and Guillermo R. Simari

when an argument 〈Ai , hi 〉 is used as a blocking defeater for 〈Ai−1, hi−1〉 during

the construction of an argumentation line, only a proper defeater could be used for

defeating 〈Ai , hi〉.

In DeLP, the undesirable situations mentioned above are avoided by requiring

all argumentation lines to be acceptable as defined next.

Definition 4.7 (Acceptable argumentation line)

Let Λ = [〈A1, h1〉, . . . , 〈Ai , hi〉, . . . , 〈An , hn〉] be an argumentation line. Λ is an

acceptable argumentation line iff:

1. Λ is a finite sequence.

2. The set ΛS , of supporting arguments is concordant, and the set ΛI of inter-

fering arguments is concordant.

3. No argument 〈Ak , hk 〉 in Λ is a subargument of an argument 〈Ai , hi〉 appear-

ing earlier in Λ (i < k .)

4. For all i , such that the argument 〈Ai , hi〉 is a blocking defeater for 〈Ai−1, hi−1〉,

if 〈Ai+1, hi+1〉 exists, then 〈Ai+1, hi+1〉 is a proper defeater for 〈Ai , hi〉.

It is interesting to note that changes in the definition of acceptable argumentation

line may produce a different behavior of the formalism. Thus, this definition could

be used as a way of tuning the system to obtain different results.

5 Warrant through Dialectical Analysis

In DeLP a literal h will be warranted2 if there exists a non-defeated argument

structure 〈A, h〉. In order to establish whether 〈A, h〉 is non-defeated, the set of

defeaters for A will be considered. Since each defeater D for A is itself an argument

structure, defeaters for D will in turn be considered, and so on. Therefore, as stated

in Example 4.3, more than one argumentation line could arise, leading to a tree

structure that we will call dialectical tree.

Definition 5.1 (Dialectical Tree)

Let 〈A0, h0〉 be an argument structure from a program P . A dialectical tree for

〈A0, h0〉, denoted T〈A0, h0〉, is defined as follows:

1. The root of the tree is labeled with 〈A0, h0〉.

2. Let N be a non-root node of the tree labeled 〈An , hn〉, and

Λ= [〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An , hn〉] the sequence of labels of the

path from the root to N . Let 〈B1, q1〉, 〈B2, q2〉, . . ., 〈Bk , qk 〉 be all the de-

featers for 〈An , hn〉.

For each defeater 〈Bi , qi〉 (1 ≤ i ≤ k), such that, the argumentation line

Λ′ = [〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An , hn〉, 〈Bi , qi〉] is acceptable, then the

node N has a child Ni labeled 〈Bi , qi〉.

If there is no defeater for 〈An , hn〉 or there is no 〈Bi , qi〉 such that Λ′ is

acceptable, then N is a leaf.

2 In previous work we have used the term justification. We decide to adopt the term warrant in
order to unify the terminology with other approaches.

Defeasible Logic Programming An Argumentative Approach 23

In a dialectical tree every node (except the root) represents a defeater (proper

or blocking) of its parent, and leaves correspond to non-defeated arguments. Each

path from the root to a leaf corresponds to one different acceptable argumentation

line. As we will show in Example 5.1 the dialectical tree provides a structure for

considering all the possible acceptable argumentation lines that can be generated

for deciding whether an argument is defeated. We call this tree dialectical because

it represents an exhaustive dialectical analysis for the argument in its root.

〈A, a〉

���
HHH

〈B1,∼b〉 〈B2,∼b〉 〈B3,∼b〉

�
��

@
@@

〈C1,∼f 〉 〈C2,∼f 〉

〈D1,∼h〉

Fig. 9. Dialectical tree for Example 5.1

Example 5.1

Consider the following de.l.p.:

a —< b ∼b —< e ∼b —< c, f ∼f —< i

b —< c e f —< g i

c ∼f —< g, h g ∼h —< k

∼b —< c, d h —< j k

d j

Here, the literal a is supported by 〈A, a〉= 〈{(a —< b), (b —< c)}, a〉 and there exist

three defeaters for it, each of them starting three different argumentation lines:

〈B1,∼b〉 = 〈{(∼b —< c, d)},∼b〉, 〈B2,∼b〉 = 〈{(∼b —< c, f), (f —< g)},∼b〉, and

〈B3,∼b〉 = 〈{(∼b —< e)},∼b〉. The first two are proper defeaters and the last one is

a blocking defeater. Observe that the argument structure 〈B1,∼b〉 has the counter-

argument 〈{b —< c}, b〉, but it is not a defeater because the former is more specific.

Thus, no defeaters for 〈B1,∼b〉 exist and the argumentation line ends there.

The argument structure 〈B3,∼b〉 has a blocking defeater: 〈{b —< c}, b〉. Note that

〈{b —< c}, b〉 is the disagreement subargument of 〈A, a〉, therefore, it cannot be in-

troduced because it produces an argumentation line that is not acceptable.

The argument structure 〈B2,∼b〉 has two defeaters that can be introduced:

〈C1,∼f 〉 = 〈{(∼f —< g, h), (h —< j)},∼f 〉 (proper defeater) and

〈C2,∼f 〉 = 〈{(∼f —< i)}},∼f 〉 (blocking defeater.)

Thus, one of the lines is split in two argumentation lines. The argument 〈C1,∼f 〉 has

a blocking defeater that can be introduced in the line: 〈D1,∼h〉 = 〈{(∼h —< k)},∼h〉.

Finally, observe that both 〈D1,∼h〉 and 〈C2,∼f 〉 have a blocking defeater, but they

cannot be introduced, because they make the argumentation line not acceptable.

The dialectical tree for 〈A, a〉 is shown in Figure 9.

24 Alejandro J. Garćıa and Guillermo R. Simari

Observation 5.1

A subtree of a dialectical tree (i. e., a node with all its descendants) is not always a

dialectical tree. Suppose we build an acceptable argumentation line where a defeater

〈A, h〉 will not be included because it would make the line unacceptable. There

might be a subsequence of the mentioned line where the same defeater could be

included, as the following example shows.

Example 5.2

Consider the de.l.p. P= { (a —< b), (∼a —< c), (a —< f), (b), (c), (d) }.

Here, 〈{∼a —< c},∼a〉 and 〈{a —< b}, a〉 are blocking defeaters, and 〈{∼a —< c},∼a〉

and 〈{a —< f }, a〉 are also blocking defeaters. Consider the following dialectical tree,

with only one argumentation line

〈{a —< b}, a〉

↑

〈{∼a —< c},∼a〉

The argument structure 〈{a —< f }, a〉 cannot be included in the tree as a defeater for

〈{∼a —< c},∼a〉, because a blocking-blocking situation occurs, and the argument

structure 〈{a —< b}, a〉 cannot be included as a defeater for 〈{∼a —< c},∼a〉, because

it was already used in the argumentation line.

The node 〈{∼a —< c},∼a〉 is a subtree of the one above, but it is not a dialectical

tree because 〈{a —< f }, a〉 and 〈{a —< b}, a〉, which are defeaters for 〈{∼a —< c},∼a〉,

are not in the tree.

〈A, a〉D

���
HHH

〈B1,∼b〉U 〈B2,∼b〉D 〈B3,∼b〉U

�
��

@
@@

〈C1,∼f 〉D 〈C2,∼f 〉U

〈D1,∼h〉U

Fig. 10. Marked dialectical tree for Example 5.1

In order to decide whether the root of a dialectical tree is defeated, a marking

process will be defined. Nodes will be recursively marked as “D” (defeated) or “U ”

(undefeated) as follows:

Procedure 5.1 (Marking of a dialectical tree)

Let T〈A, h〉 be a dialectical tree for 〈A, h〉. The corresponding marked dialectical

tree, denoted T ∗

〈A, h〉
, will be obtained marking every node in T〈A, h〉 as follows:

1. All leaves in T〈A, h〉 are marked as “U ”s in T ∗

〈A, h〉
.

2. Let 〈B, q〉 be an inner node of T〈A, h〉. Then 〈B, q〉 will be marked as “U ”

in T ∗

〈A, h〉
iff every child of 〈B, q〉 is marked as “D”. The node 〈B, q〉 will be

marked as “D” in T ∗

〈A, h〉
iff it has at least a child marked as “U ”.

Defeasible Logic Programming An Argumentative Approach 25

This procedure suggests a bottom-up marking process, through which we are

able to determine the marking of the root of a dialectical tree. Figure 10 shows the

dialectical tree of Figure 9 after applying the marking procedure.

The notion of warrant will be defined in terms of a marked dialectical tree as

follows.

Definition 5.2 (Warranted literals)

Let 〈A, h〉 be an argument structure and T ∗

〈A, h〉
its associated marked dialectical

tree. The literal h is warranted iff the root of T ∗

〈A, h〉
is marked as “U ”. We will

say that A is a warrant for h.

Proposition 5.1

If a literal q has a strict derivation from a de.l.p. P, then, q is warranted.

Proof: By Observation 3.1, if there exists a strict derivation for q from P, then

there exists a unique argument structure for q: 〈∅, q〉. By Proposition 3.1, there

exists no possible counter-argument for 〈∅, q〉. Therefore, there will be no defeaters

for 〈∅, q〉, and then q will be a warranted.

In other approaches (Dung, 1995; Toni & Kakas, 1995; Antoniou et al., 2000a;

Pollock, 1995; Prakken & Sartor, 1997), the same idea that ‘an argument A will

be defeated if there exists at least one defeater for it that it is not defeated’ is

used, but in these approaches the notions of argument, defeater, or the argumenta-

tion process differ from ours. For example, in (Toni & Kakas, 1995), a similar tree

structure was developed for computing the acceptability semantics for negation as

failure, however, for them arguments correspond to a set of default negated literals.

In (Prakken & Sartor, 1997) a dialogue tree is used, and in (Pollock, 1995) an “In-

ference Graph” was introduced. See Section 8 for further discussion on the related

approaches.

It is interesting to note that the notions of acceptable argumentation line and

the dialectical tree provide a flexible structure for defining different argumentation

protocols when considering different strategies for accepting defeaters during argu-

mentation. This is an advantage over other formalisms where changing the protocol

means changing the whole system.

Based on the notion of warrant, we will define a modal operator of belief “B”,

where Bh means h is warranted, and ¬Bh means h is not warranted.

Definition 5.3 (Answer to queries)

The answers of a DeLP interpreter can be defined in terms a modal operator B . In

terms of B , there are four possible answers for a query h:

• yes, if Bh (h is warranted)

• no, if Bh (the complement of h is warranted)

• undecided, if ¬Bh and ¬B∼h (neither h nor ∼h are warranted.)3

• unknown, if h is not in the language of the program.

3 Observe that the symbol “¬” corresponds to classical negation in the meta-language of the
modal operator

26 Alejandro J. Garćıa and Guillermo R. Simari

Example 5.3

Consider the de.l.p. of Example 5.1. There, the literal “w” is not in the language

of the program, so the answer for the query “w” is unknown. The answer for “a”

is undecided because as shown by the dialectical tree of Figure 10, the literal “a”

is not warranted, and the literal “∼a” is also not warranted because there is no

argument structure supporting it. The argument 〈B1,∼b〉 has no defeaters, so “∼b”

is warranted (B∼b) and the answer for query “∼b” is yes. Since B∼b, then the

answer for query “b” is no.

Example 5.4

Regarding the de.l.p. P2.1, the answer for flies(tina) is yes, and the answer for

∼flies(tina) is no.

Considering the program P2.2, the answer for pacifist(nixon) is undecided, and

the answer for ∼pacifist(nixon) is also undecided.

In the case of example P2.4, the answer for buy stocks(acme) is yes, and the answer

for buy stocks(alfa) is unknown.

Example 5.5

From the de.l.p. P2.2 of Example 2.2 the following argument structures can be ob-

tained: 〈A1, has a gun(nixon)〉, 〈A2,∼has a gun(nixon)〉, 〈A3,∼pacifist(nixon)〉,

and 〈A4, pacifist(nixon)〉, where

A1= {has a gun(nixon) —< lives in chicago(nixon)}

A2 =

{

∼has a gun(nixon) —< lives in chicago(nixon), pacifist(nixon)

pacifist(nixon) —< quaker(nixon)

}

A3= {∼pacifist(nixon) —< republican(nixon)}

A4= {pacifist(nixon) —< quaker(nixon) }

Here, 〈A3,∼pacifist(nixon)〉 is a blocking defeater for 〈A4, pacifist(nixon)〉, and

vice versa, therefore in DeLP the answer for the query ‘pacifist(nixon)’ will be

undecided. The argument structure 〈A2,∼has a gun(nixon)〉 is a proper defeater

for 〈A1, has a gun(nixon)〉. Observe that 〈A3,∼pacifist(nixon)〉 is a blocking de-

feater for 〈A2,∼has a gun(nixon)〉, since 〈A4, pacifist(nixon)〉 is a subargument of

〈A2,∼has a gun(nixon)〉.

An argument behaving like 〈A2,∼has a gun(nixon)〉 is called in (Makinson & Schlechta, 1991)

a “zombie argument”: it is not ‘alive’ because it is blocked by the argument 〈A3,∼pacifist(nixon)〉,

but it is not ‘fully dead’ because it is defeating the argument 〈A1, has a gun(nixon)〉.

As stated in (Prakken & Vreeswijk, 2000), in such a case, for several argumentation

formalisms, neither of the three arguments, A1, A2, A3, is a warrant.

In DeLP 〈A1, has a gun(nixon)〉 is defeated by 〈A2,∼has a gun(nixon)〉, but

〈A2,∼has a gun(nixon)〉 is in turn defeated by 〈A3,∼pacifist(nixon)〉, reinstating

〈A1, has a gun(nixon)〉. The argument 〈A4, pacifist(nixon)〉 cannot be used to de-

feat 〈A3,∼pacifist(nixon)〉 because the argumentation line will not be acceptable

(see condition 4 of Definition 4.7). Therefore, A1 is a warrant for has a gun(nixon).

Example 5.6

Defeasible Logic Programming An Argumentative Approach 27

P5.6 =

∼p ← f p —< d , h

d ∼p —< d , h,∼a

h ∼a —< e

e a —< e, f

f —< d

From the de.l.p. above the following argument structures can be obtained:

〈B, p〉 = 〈{p —< d , h}, p〉

〈C,∼p〉 = 〈{(∼p —< d , h,∼a), (∼a —< e)},∼p〉

〈A, a〉 = 〈{(a —< e, f), (f —< d)}, a〉

We will first consider a potential warrant for literal p. 〈B, p〉 has the proper

defeater 〈C,∼p〉 defeated in turn by its proper defeater 〈A, a〉 in ∼a. If the argu-

mentation line Λ1 = [〈B, p〉, 〈C,∼p〉, 〈A, a〉] were acceptable, literal “p” would be

warranted.

Next, we will consider a potential warrant for literal ∼p. As stated above, 〈C,∼p〉

has the proper defeater 〈A, a〉, but note that 〈A, a〉 is also defeated by 〈B, p〉 (using

the strict rule“∼p ← f ”). Consider Λ2 = [〈C,∼p〉, 〈A, a〉, 〈B, p〉]. Although 〈C,∼p〉

defeats 〈B, p〉, it cannot be introduced in Λ2 because of the circularity restriction.

If Λ2 were to be acceptable, the literal ∼p would now be warranted.

Therefore, accepting Λ1 for p and Λ2 for ∼p would render both literals warranted.

This will no happen in DeLP because neither Λ1 nor Λ2 satisfy the concordance

restriction and therefore they are not acceptable argumentation lines. Observe that

〈B, p〉 and 〈A, a〉 are not concordant, and 〈B, p〉 and 〈C,∼p〉 are not concordant

either.

5.1 The Warrant Procedure with pruning

In order to decide whether a literal h is warranted from a de.l.p. P, the warrant

procedure has to find an argument structure 〈A, h〉 and, as established by Defini-

tion 5.2, the root of T ∗

〈A, h〉
has to be marked as “U ”. We will introduce in this

section a procedure for deciding whether a given literal is warranted. This procedure

will not explore, in general, the whole dialectical tree, and answers will therefore

be computed in a more efficient way.

Given a programP , there could be several argument structures 〈A1, h〉, . . . , 〈Ai , h〉

for a literal h. However, the warrant procedure will not construct all the possible

argument structures for h; it will consider each one of them in turn, exploring the

associated dialectical tree. This optimization is similar in spirit to the one found in

OSCAR (Pollock, 1996).

Observe that a marked dialectical tree T ∗

〈A, a〉
, like the one in Figure 11 (left),

resembles the minimax tree used in Artificial Intelligence for game trees. Here,

instead of nodes marked with 1 or -1, the tree has nodes marked “D”, or “U ”.

Note also that during the marking of the dialectical tree, some nodes are not

contributing to the decision procedure (the marking), i. e. are such that they could

be either “U ” or “D” without changing the marking of the dialectical tree’s root.

For example, in Figure 11 (left) the left-most child of the root is a “U ”, so the root

28 Alejandro J. Garćıa and Guillermo R. Simari

is a “D”, no matter what the marking of the other two children of the root are.

Hence, such a don’t-care node obviously belongs to a branch that may be pruned.

This pruning process is similar to the α-β pruning of a mini-max tree.

Clearly, during the marking procedure, once a node is labeled “U ” all of its

siblings can be pruned. Figure 11 (left) shows a marked dialectical tree for argument

structure 〈A, a〉 of Example 5.1 and the pruned tree in depth-first order (right.)

〈A, a〉D

���
HHH

〈B1,∼b〉U 〈B2,∼b〉D 〈B3,∼b〉U

�
��

@
@@

〈C1,∼f 〉D 〈C2,∼f 〉U

〈D1,∼h〉U

〈A, a〉D

���
HHH

〈B1,∼b〉U -pruned- -pruned-

Fig. 11. Marked Dialectical tree for example 5.1 (left) and pruned (right)

Given a query q the warrant procedure first will try to generate an argument

structure A1 for q . If A1 for q is found, then the warrant procedure will try to build

a defeater A2 for some counter-argument point in A1 (see the example below.) If

such defeater exists, it will try to build a defeater A3 for A2, and so on, building

in this form an argumentation line. Thus, a dialectical tree will be generated in

depth-first manner, considering (from left to right) every acceptable argumentation

line.

In a dialectical tree there are as many argumentation lines as leaves in the tree,

and each of them could finish in a supporting or an interfering argument. Exam-

ple 5.7 shows how a dialectical tree is constructed in a depth-first manner, consid-

ering supporting and interfering arguments for each possible argumentation line,

and how the marking procedure and pruning is done while building the tree.

Example 5.7

Suppose that, in order to find a warrant for h1, the argumentA1 is found, and the ac-

ceptable argumentation line [〈A1, h1〉, 〈A2, h2〉, 〈A3, h3〉, 〈A4, h4〉, 〈A5, h5〉] is built,

see Figure 12 (i.) In this situation, the acceptable argumentation line ends with the

supporting argument A5, so the marking procedure establishes that 〈A1, h1〉 is –up

to this point– a “U ”. However, the warrant process cannot finish there because there

could be more defeaters to consider. Therefore, the process will continue expanding

other argumentation lines.

First, note that although there could be more defeaters for A4, considering them

will not change A4’s status because of A5. Therefore, the tree can be pruned at

that point without considering further defeaters for A4.

However, the previous analysis does not apply to A3, because if an undefeated

defeater is found for it, the mark of A3 could change. It is for this reason that

Defeasible Logic Programming An Argumentative Approach 29

〈A1, h1〉
U

��
〈A2, h2〉

D

��
〈A3, h3〉

U

��
〈A4, h4〉

D

��
〈A5, h5〉

U

〈A1, h1〉
D

��
〈A2, h2〉

U

��
〈A3, h3〉

D

AA
〈A′

4, h
′

4〉
U

(i) (ii)

Fig. 12. Argumentation lines of Example 5.7

the procedure will look for any other possible defeater A4
′ for A3, creating a new

argumentation line, see Figure 12-ii.

If a defeater A4
′ is found (with no defeaters), then the argumentation line will

end with an interfering argument, and therefore A1 will be a “D”, see Figure 12-ii.

Again, pruning could be effected, because although there could be more defeaters

for A3, they cannot modify its status. However, there might be another defeater

A3
′ for A2, creating, in that case, a new argumentation line.

Figure 13 shows a Prolog-like specification of the top level of the warrant pro-

cedure with pruning. Predicates warrant/2 and defeated/2 specify how to perform

the dialectical analysis. That is, a query Q will be warranted if an argument A for

Q is found, and A is not defeated. The predicate find argument/2 (not developed in

the figure) simply builds an argument for a given query.

The predicate defeated/2, receives an argument A and an argumentation line

ArgLine, and tries to find a defeater D for A, checking that D is acceptable as part of

the argumentation line. If acceptable/3 succeeds, then it returns NewLine adding D

to ArgLine. Since the argument A will be defeated if there exists a defeater that is

in turn not defeated, then finally a call to \+ defeated(D,NewLine) is made.

The predicate find defeater/2 calls find counterarg/2 that looks for an argument

C that counter-argues A with a disagreement sub-argument SubA. The argument C

will be a defeater for A if SubA is not better than C. The predicate better/2 succeeds

when the first argument is better than the second regarding the chosen comparison

criterion. Observe finally that the pruning is performed calling defeated/1 recur-

sively with Prolog’s negation as failure “\+”.

30 Alejandro J. Garćıa and Guillermo R. Simari

warrant(Q,A):- % Q is a warranted literal

find_argument(Q,A), % if A is an argument for Q

\+ defeated(A,[support(A,Q)]). % and A is not defeated

defeated(A,ArgLine):- % A is defeated

find_defeater(A,D,ArgLine), % if there is a defeater D for A

acceptable(D,ArgLine,NewLine), % acceptable within the line

\+ defeated(D,NewLine). % and D is not defeated

find_defeater(A,C):- % C is a defeater for A

find_counterarg(A,C,SubA), % if C counterargues A in SubA

\+ better(SubA,C). % and SubA is not better than C

Fig. 13. Specification of the Warrant Procedure with Pruning

6 DeLP Extensions

6.1 DeLP with Default Negation

As discussed in (Alferes et al., 1996), logic programs, deductive databases, and

more generally non-monotonic theories, use various forms of default negation, “not F”,

whose major distinctive feature is that ‘not F ’ is assumed by default, i. e., it is as-

sumed in the absence of sufficient evidence to the contrary. In DeLP “absence of

sufficient evidence” means “there is not warrant”. Therefore, the default negation

‘not F ’ will be assumed when the literal F is not warranted.

We will discuss here briefly how to extend DeLP for using default negation. A

more detailed paper with the definition of extended DeLP, and a comparison with

other approaches is in preparation.

When DeLP is extended to consider default negation, some characteristics of the

formalism just described are affected. For a correct treatment of default negation

in DeLP, further considerations will be required.

Default negation will be allowed only preceding literals in the body of defea-

sible rules, e. g., ‘∼cross railway tracks —< not ∼train is coming4’, and defeasible

rules that use default negation will be called extended defeasible rules. The reason

not allowing default negation in strict rules is twofold. On one hand, a strict rule

‘p ← not q’ is not completely strict, because the head ‘p’ will be derived assum-

ing ‘not q’. On the other hand, the set Π of strict rules and facts could become

a contradictory set in many cases. An Extended Defeasible Logic Program will be

then, a set of Facts, Strict Rules and Extended Defeasible Rules.

Since the decision of assuming an extended literal “not L” will be carried out

by the dialectical process, the definition of defeasible derivation (Definition 2.5) is

modified acordingly in extended DeLP. The change reflects that when an extended

literal is found in the body of a rule, that literal will be ignored:

4 Adapted from an example attributed to John McCarthy in (Gelfond & Lifschitz, 1990).

Defeasible Logic Programming An Argumentative Approach 31

Definition 6.1 (Extended Defeasible Derivation)

Let P=(Π,∆) be an extended defeasible logic program and L a ground literal.

A defeasible derivation of L from P, denoted P |∼ L, consists of a finite sequence

L1,L2, . . . ,Ln = L of ground literals, and each literal Li is in the sequence because:

(a) Li is a fact in Π, or

(b) there exists a rule Ri in P (strict or defeasible) with head Li and body

B1,B2, . . . ,Bk and every literal of the body, except the ones preceded by

default negation, is an element Lj of the sequence appearing before Li (j < i .)

The definition of argument structure is also extended in order to avoid the in-

troduction of self-defeating arguments, shown in the following example. Consider

the set of defeasible rules: A={(a —< b), (b —< not a) }. From any de.l.p. including

those rules, it is possible to obtain a defeasible derivation for “a”, assuming “not a”.

However, an argument structure like 〈A, a〉 would be a new kind of self-defeating

argument that we would like to avoid. Observe the new condition “2” below.

Definition 6.2 (Extended Argument Structure)

Let h be a literal, and P=(Π,∆) an extended defeasible logic program. An argument

structure 〈A, h〉 for a ground literal h, is a set of extended defeasible rules of ∆,

such that:

1. there exists a defeasible derivation for h from Π ∪ A.

2. if L is a literal in the defeasible derivation of h, then there is no defeasible

rule in A containing “not L” in its body.

3. Π ∪ A is non-contradictory, and

4. A is minimal: there is no proper subset A′ of A such that A′ satisfies condi-

tions (1) and (3).

In extended DeLP, default negated literals will be another point of attack in an

argument. Phan Dung in (Dung, 1993a) points out that “default negated literals

are assumptions on which the derivation is based. The acceptance of the derivation

depends on the acceptance of these assumptions”. In his work, Dung defines a notion

of ground attack: an argument A′ for l , is a ground attack for A, if A contains a

default negated literal not l . That is, an argument based on an assumption “not l”

could be attacked by an argument that supports the literal “l”. We will extend our

notion of defeat, incorporating Dung’s notion of ground attack. Something similar

was done in (Prakken & Sartor, 1997).

We say that an argument structure 〈A, h〉 is an attack to an assumption of 〈B, q〉,

if the extended literal “not h” is in the body of a defeasible rule in B. The notion

of defeater will be extended considering this new kind of attack.

Definition 6.3

An argument structure 〈A1, h1〉 is a defeater for 〈A2, h2〉, if and only if either:

(a) 〈A1, h1〉 is a proper defeater for 〈A2, h2〉, or

(b) 〈A1, h1〉 is a blocking defeater for 〈A2, h2〉, or

(c) 〈A1, h1〉 is an attack to an assumption of 〈A2, h2〉.

32 Alejandro J. Garćıa and Guillermo R. Simari

With this new definition of defeater, default negated literals become new points

of attack. Thus, when the dialectical analysis is carried out, default negated literals

could be defeated by arguments. It’s easy to see that DeLP negation satisfies the co-

herence principle established in (Alferes & Pereira, 1994; Pereira & Alferes, 1994):

If “∼p” is warranted, then “not p” can be assumed.

We claim that both negations are needed for representing knowledge in a natural

manner. However, some approaches in the literature (Kakas et al., 1994; Dimopoulos & Kakas, 1995;

Xianchang Wang, 1997) have tried to define default negation in terms of strong

negation. Here follows some proposed transformations and counterexamples show-

ing why they fail.

In the approach of Logic Programming without Default Negation (Kakas et al., 1994;

Dimopoulos & Kakas, 1995), a priority relation between rules is used for deciding

between competing rules. In their approach they remove default negation using the

following transformation: the rule “r0 :p ← q,not s” is transformed into two rules,

“r1:p ← q” and “r2:∼p ← s”, with r1 < r2. Hence, when s is not derivable, the

rule r2 cannot be used, and there is a derivation for p. On the other hand when s

is derivable, rule r2 blocks r1.

However, in this approach, when s becomes derivable after the transformation,

the literal ∼p, that was not derivable from the original program is now derivable

in the transformed one. This new derivable literal may cause unexpected results,

as shown in Example 6.1 where we compare a de.l.p. P with default negation, and

the program P ′ obtained with the transformation cited above. The program P ′ has

the priority: (∼p —< r) > (p —< q).

Example 6.1

P P ′

p —< q,not s p —< q

∼p —< s

q q

s s

a —< q a —< q

∼a —< ∼p ∼a —< ∼p

Observe that from P there is no argument for p, there is no argument for ∼p,

and the literal a is warranted. However, in the transformed program P ′ the literal

∼p is warranted and there is no warrant for the literal a, because ∼p allows to

build an argument for ∼a that defeats the argument for a. Further comments on

the transformation cited above were reported in (Xianchang Wang, 1997).

In (Xianchang Wang, 1997), where Priority Logic Programming was defined, an-

other transformation is given: a rule “p ← not q” is transformed to “ p ← q”,

where “q” is a new symbol. In addition, for every literal p of the program, two

new rules are generated: “r1 : p ← p” and “r2 : p”, with r2 < r1 . We refer the

interested reader to (Xianchang Wang, 1997) for the details of the transformation.

Here follows an example of a de.l.p. P and its transformation P ′.

Defeasible Logic Programming An Argumentative Approach 33

Example 6.2

P P ′

p ← not q p ← q

q

p

p ← p

q ← q

In Example 6.2, from the transformed program P ′ new literals will be derived that

may interact with other parts of the program.

6.2 DeLP with presumptions

A defeasible rule with an empty body is called a presumption (Nute, 1988). In our

approach a rule like “a —< ” would express that “there are (defeasible) reasons to

believe in a”.

Extending DeLP to consider presumptions is straightforward. We will show that

only slight modifications need to be made in the formalism. An extended defeasible

logic program will be a set of facts, strict rules, defeasible rules and presumptions.

We will denote with ∆+ the set of defeasible rules, and presumptions. The definition

of defeasible derivation is the only one that has to be extended in order to consider

presumptions. In Definition 2.5, condition (a) has to be changed to: “Li is a fact or

a presumption”.

One major difference with respect to a regular de.l.p. is that presumptions are

defeasible rules without body. Given an extended de.l.p. (Π,∆+) with no facts,

defeasible derivations and arguments can still be obtained. For example, from the

de.l.p. P1 = {(b —<), (a —< b)} a defeasible derivation for “a” can be obtained.

Thus, argument structures could be based on facts, on presumptions, or both.

Since presumptions are a special case of defeasible rules, the notion of argument

structure remains intact. However, given an argument structure 〈A, h〉, the set A

will be a set of defeasible rules that could include presumptions (A ⊆ ∆+). The

definitions of disagreement, counter-argument, defeater, dialectical tree, and the

warrant procedure are not affected by the inclusion of presumptions.

The comparison criterion could be affected. As the following example shows, the

specificity criterion defined in this paper has some problems when the argument

contains presumptions.

Example 6.3

Consider the extended de.l.p. (Π,∆+), where Π= {f}, and ∆+= {(a —< p, f), (p —<),

(∼a —< f), (a —< t), (t —<)}. The following argument structures can be obtained:

〈A1, a〉 = 〈{(a —< t), (t —<)}, a〉

〈A2,∼a〉 = 〈{∼a —< f },∼a〉

〈A3, a〉 = 〈{(a —< p, f), (p —<)}, a〉

34 Alejandro J. Garćıa and Guillermo R. Simari

Observe that 〈A2,∼a〉 is based on the fact f , and 〈A1, a〉 is based on the pre-

sumption t . Clearly, an argument based on facts should be preferible to one based

on presumptions. In this case Definition 3.5 behaves as expected, because it states

that 〈A2,∼a〉 is more specific than 〈A1, a〉.

However, in other cases, this definition does not behave correctly. Observe now

that 〈A2,∼a〉 is based on the fact f , 〈A3, a〉 is based on the fact f and the pre-

sumption p, i. e. 〈A3, a〉 is using more information. Here, Definition 3.5 states that

〈A2,∼a〉 and 〈A1, a〉 are incomparable. The reason for this is that presumptions

do not have a body and therefore the set H = {f } activates A2. Other examples

were analyzed in (Garćıa, 2000).

If the comparison criterion used is based on rules priorities, then the criterion

has to find the way of preferring a fact over a presumption. Otherwise, an argument

based on a fact and an argument based on a presumption (like 〈A2,∼a〉 and 〈A1, a〉

in the example above) will be of equal strength.

One simple way of solving the problems mentioned above is establishing that

arguments based on facts will be preferable to arguments based on presumptions.

The extension of the comparison criteria to consider presumptions is currently under

study.

7 Implementation and Applications

An interpreter of DeLP was implemented in Prolog, and can be used through

the web (see http://cs.uns.edu.ar/∼ ajg/DeLP.html). Also an abstract machine

called jam (Justification Abstract Machine) (Garćıa, 1997) has been designed for

the implementation of DeLP, as an extension of the Warren’s abstract machine

(wam). A prototype implementation of the jam as a virtual machine was also

developed, and is subject of future research.

Applications that deal with incomplete and contradictory information can be

easily modeled using DeLP programs. The defeasible argumentation basis of DeLP

allows the building of applications for dynamic domains, where information may

change. Thus, Defeasible Logic Programming can be used for representing knowl-

edge and for providing an inference engine in many applications. A concrete ap-

plication of DeLP was (Garćıa et al., 2000), where a multi-agent system for the

stock market domain was developed. The application consists of several delibera-

tive agents for monitoring the stock market and performing actions based on the

retrieved information. The agents reason using DeLP, and are capable of formu-

lating arguments and counterarguments in order to decide whether to buy or sell

some stock. Other applications are in progress.

8 Related Work

DeLP combines Defeasible Argumentation and Logic Programming. In both areas

there have been developed several related approaches. We will comment first the

differences with other Defeasible Reasoning formalisms and then with extentions of

Logic Programming that are related with our work.

http://cs.uns.edu.ar/unhbox voidb@x hbox {$sim $}

Defeasible Logic Programming An Argumentative Approach 35

8.1 Defeasible Logic and Argumentation

Nute’s d-Prolog (Nute, 1988; Nute, 1994) was the first to introduce defeasible rea-

soning programming with specificity. d-Prolog syntax has strict and defeasible rules

and strong negation. However, d-Prolog’s rules do not allow default negation. The

language of d-Prolog provides facilities to define defeater rules like “sick birds do

not fly”. The purpose of defeater rules is to account for the exceptions to defea-

sible rules. However, in (Antoniou et al., 2001) it is shown that defeaters can be

simulated by means of strict and defeasible rules (in Nute’s sense).

DeLP does not need to be supplied with defeater rules. The system will find the

counterarguments among the arguments it is able to build, and will decide on the

defeat relation using a comparison criterion. Thus, in DeLP the programmer does

not need to encode explicit exceptions.

One important difference between d-Prolog and our approach is the way in which

contradictory conclusions are treated. In d-Prolog there is no notion of argument. In

order to decide between two contradictory conclusions, d-Prolog compares only one

pair of rules, whereas in DeLP the two arguments that support those conclusions

are compared. Comparing only a pair of rules may be problematic as we show next.

Consider the program P1 = {(a —< b), b, (c —< d), d , (h ← a), (∼h ← c)} of

Example 2.3. In d-Prolog the literal a is accepted as proved from P1 because

there is no rule with “∼a” in its head, so no rule that contradicts “a —< b” is

found. However, literals a and c disagree: literals h and ∼h are derivable from

{a, c}∪{(h ← a), (∼h ← c)}. In DeLP, the argument B = {(c —< d)} is a block-

ing defeater for A = {a —< b}, because a and c disagree. Therefore, a fails to be

warranted, and the answer for a is undecided. Answer for c is also undecided.

Another problematic situation of comparing two rules without considering the

rest of the program follows. Some approaches consider that R1 =“∼p —< q, r” is

better than R2=“p —< q” because the body of R1 has more information. However,

it may not be true, depending on the basis for the literal r . For instance, consider

the program P2 = {(p —< q), q, (∼p —< q, r), (r ← q)}. Here, r is obtained strictly

from q, so it’s not true that R1 is based on more information than R2. Both rules

have the same basis: the literal q.

A major difference is that in d-Prolog there is no dialectical analysis, and no treat-

ment for circular argumentation lines. The interested reader is referred to (Prakken & Vreeswijk, 2000),

where other features of Nute’s work are discussed.

Besides Nute’s work on Defeasible Logic, recent work by Grigoris Antoniou, David

Billington, Michel Maher and Guido Governatori, has extended Nute’s approach,

see (Antoniou et al., 2000a; Antoniou et al., 1998). Unfortunately, the same prob-

lems mentioned above for d-Prolog are inherited there.

The defeasible argumentation formalism developed in (Simari & Loui, 1992) and

used here, was inspired in part by Pollock’s work in Defeasible Reasoning (Pollock, 1987).

However, Pollock has changed the way in which an argument is warranted, adopting

36 Alejandro J. Garćıa and Guillermo R. Simari

a multiple status assignment approach5 (Pollock, 1995; Pollock, 1996). Pollock has

developed a computer program in Lisp, called OSCAR (Pollock, 1995) that per-

forms defeasible reasoning. In OSCAR, arguments are sequences of linked reasons,

and probabilities are used for comparing competing arguments. In a way similar

to Nute’s defeater rules, explicit ‘undercutting’ defeaters can be expressed in his

language. An inference graph is used by OSCAR for evaluating the status of argu-

ments. Pollock argues that human reasoning is defeasible in two different senses. He

distinguishes between ‘synchronically defeasible’ (a conclusion may be unwarranted

relative to a larger set of inputs) and ‘diachronically defeasible’ (a conclusion may

be retracted as a result of further reasoning, without any new input). Hence, in

OSCAR an argument may be ‘justified’ in one stage of reasoning, and unjustified

later, without any additional input. However an argument is ‘warranted’ when the

reasoner reaches a stage, where for any new stages of reasoning the argument re-

mains undefeated. This notion of warrant coincides with ours. However, in OSCAR

a bottom-up procedure is used for computing justified and warranted arguments.

In (Dung, 1995), P. Dung has proposed a very abstract and general argument-

based framework, where he completely abstracts from the notions of argument and

defeat. In contrast with our approach of defining an object language for representing

knowledge and a concrete notion of argument and defeat, Dung’s approach assumes

the existence of a set of arguments ordered by a binary relation of defeat. However,

he defines various notions of ‘argument extensions’, which aim to capture various

types of defeasible consequence.

Inspired by legal reasoning, H. Prakken and G. Sartor (Prakken & Sartor, 1997)

have developed an argumentation system that, like ours, uses the language of ex-

tended logic programming. They introduce a dialectical proof theory for an argu-

mentation framework fitting the abstract format developed by Dung, Kowalski et

al. (Dung, 1995; Bondarenko et al., 1993). However, since they are inspired by legal

reasoning, the protocol for dispute is rather different from our dialectical tree. A

proof of a formula takes the form of a dialogue tree, where each branch of the tree

is a dialogue between a proponent and an opponent. Proponent and opponent have

different rules for introducing arguments, leading to an asymmetric dialogue. Later,

Prakken (Prakken, 1997) generalized the system to default logic’s language.

R. Kowalski and F. Toni (Kowalski & Toni, 1996) have outlined a formal theory

of argumentation, in which defeasibility is stated in terms of non-provability claims.

They argue that defeasible reasoning with rules of the form P if Q can be under-

stood as “exact” reasoning with rules of the form P if Q and S cannot be shown,

where S stands for one or more defeasible “non-provability claims”. In (Brewka, 2001a),

a proposal of a new formal notion of argument systems is given, that focuses on

capturing the most revelant aspects of realistic argumentation processes. His main

interest is to capture the logic and procedural aspects of argumentation. The un-

derlying language of his approach is preferential default logic.

Other related approaches of defeasible argumentation are by Verheij (Verheij, 1996),

5 Unique and multiple status assignments for arguments are analyzed in depth
in (Prakken & Vreeswijk, 2000)

Defeasible Logic Programming An Argumentative Approach 37

Vreeswijk (Vreeswijk, 1997), Bondarenko (Bondarenko et al., 1997), and Loui (Loui, 1997b).

Details of them can be found in the following surveys of defeasible argumenta-

tion: (Prakken & Vreeswijk, 2000), and (Chesñevar et al., 2000).

8.2 Logic Programming

In (Gelfond & Lifschitz, 1990), Logic Programming with Classical Negation was

introduced. There, when two complementary literals can be derived, the program

becomes “contradictory” and every literal of the program can be derived. Since com-

mon sense reasoning is typically based on tentative information, and the representa-

tion of this kind of information leads in most cases to inconsistent knowledge bases,

an extended logic program usually will derive all of the language. This problem

was attacked in (Inoue, 1991), where Extended Logic Programming with Default

Assumptions is considered. This approach resembles a defeasible argumentation sys-

tem, but unfortunately no preference criterion for deciding between contradictory

explanations was considered.

In (Kakas et al., 1994), a semantics for default negation called “acceptability se-

mantics” was introduced, based on previous works on default negation and abduc-

tive logic programming (Eshghi & Kowalski, 1989; Dung, 1991; Kakas et al., 1993).

Sets of default negated literals are considered as extensions of the program, and a

notion of “attack” between these sets is defined. An extension H is acceptable iff

any attack A against H is not acceptable. A fixpoint operator for acceptability is

given. They introduce a general theory of acceptability based on a binary relation

“attack” that for LP is defined using a priority relation over program rules.

Toni and Kakas in (Toni & Kakas, 1995), developed a proof procedure for the

acceptability semantics mentioned above. In their approach a tree structure similar

to our dialectical tree was developed. Both approaches share the idea of having a tree

where children nodes attack the father node. However, as the intended application

of these trees is computing a semantics for default negation, the nodes of their tree

are sets of ‘abducibles’ (default negated literals), whereas a dialectical tree is a

tree of arguments. Since they do not consider strong negation, both approaches are

difficult to compare.

In (Kakas et al., 1994) and later in (Dimopoulos & Kakas, 1995), “Logic Pro-

gramming without Negation as Failure” (LPwNF) was introduced. A LPwNF pro-

gram consists of a set of basic rules L0 ← L1, . . . ,Ln (where Li are literals that

could use strong negation) and a given irreflexive and antisymmetric priority rela-

tion among program rules. They claim that default negation can be removed using

a program transformation. The problem with this transformation (see Example 6.1)

is that new literals are derivable that may cause other derivations to be blocked.

Other problems with the transformation were reported in (Xianchang Wang, 1997).

The proof procedure of LPwNF is very similar to the one of d-Prolog. Al-

though in (Dimopoulos & Kakas, 1995) there is no comparison with Defeasible

Logic, in (Antoniou et al., 2000a) a comparison among LPwNF, Defeasible Logic,

and ‘Courteous Logic Programs’ is given. The main result of (Antoniou et al., 2000a)

is that Defeasible Logic can prove everything that sceptical LPwNF can. In (Gelfond & Son, 1997)

38 Alejandro J. Garćıa and Guillermo R. Simari

a system to ‘investigate the methodology of reasoning with prioritized defaults in

the language of logic programs under the answer set semantics’ was developed.

Their system allows the representation of defeasible and strict rules, and the rep-

resentation of an order among those rules. The way in which defeasible inferences

are obtained is very similar to Antoniou et al. approach, although no comparison

of these two systems is given.

Sometimes, defeasible rules are considered as defaults in a default theory. How-

ever, defaults are not defeasible rules, as explained in (Nute, 1994). We will now

introduce a more illustrative example adapted from (Covington et al., 1997).

Example 8.1

Consider the following de.l.p. (left) and the same knowledge represented in a default

theory (right).

has shell(X) —< mollusc(X) mollusc(X):has shell(X)
has shell(X)

∼has shell(X) —< cephalopod(X) cephalopod(X):∼has shell(X)
∼has shell(X)

mollusc(X) ← cephalopod(X) mollusc(X) ← cephalopod(X)

cephalopod(fred) cephalopod(fred)

From the DeLP program above, there is an argument for ∼has shell(fred) that

is more specific than the argument for has shell(fred). Hence, there is a warrant

for ∼has shell(fred). However, in Default Logic there are two extensions: one with

∼has shell(fred) and the other with has shell(fred). The reason is because the de-

faults express no connection between cephalopod and mollusc. To capture this con-

nection, the first default should be changed to mollusc(X):has shell(X)∧∼cephalopod(X)
has shell(X) .

That is, the exception must be explicitly encoded in the default. In DeLP, however,

the exceptions are discovered by the warrant procedure.

The above comparison seems to be unfair because default logic has no selec-

tion mechanism. However, in (Brewka & Eiter, 2000) default logic was extended

in order to handle priorities, developing a Prioritized Default Logic (PDL). This

approach has many properties which are relevant for argumentation, such as ex-

plicit representation of preferences and reasoning about these preferences. Although

this approach is not explicitly argument-based, prioritized default theories extend

default theories adding a strict partial order on defaults, using this ordering to

define preferred extensions. PDL satisfies two reasonable principles for preference

handling, which distinguishes PDL from other approaches. However, since an or-

dering of defaults is enforced, problems similar to those mentioned for comparing

two rules are also present. Another important difference is that they only consider

sets of default rules, without introducing strict rules, as was done here.

In (Brewka, 2001b) a comparison between a variant of Defeasible Logic, called

Ambiguity Propagating (Antoniou et al., 2000b), and the prioritized version of Well-

Founded Semantics for extended logic programs (Brewka, 1996) is given. The paper

shows that under the condition that preferences are admitted between defeasible

rules only, then all defeasibly provable literals by the defeasible logic variant are

Defeasible Logic Programming An Argumentative Approach 39

true in prioritized well-founded semantics. It also shows that there are some desir-

able conclusions obtained by well-founded semantics that the variant of defeasible

logic cannot obtain.

In Prioritized Logic Program (PLP), a program is a pair (P , >) where P is a

finite set of rules of the form “c ← a1, . . . , an ,not b1, . . . ,not bm” and > is an

acyclic preference relation on P . In PLP, a rule r is said to be defeated by a literal

l if l = bi , for some i ∈ 1, . . . ,m. Clearly, if no default negated literals are used in a

program, then no rule is defeated. This represents a difference with DeLP because

counter-arguments and defeaters are defined in term of strong negation. In PLP,

default negated literals are the only point of attack, whereas in DeLP arguments

are attacked by other arguments.

The comparison in (Brewka, 2001b) is based on the translation of each defeasible

rule “{a1, . . . , an} ⇒ b” of default logic, to an extended rule with default negation:

“b ← not∼b, a1, . . . , an”. However, note that this translation captures only an

attack to a rule, and not an attack to an argument (see the example of program P1

above).

One distinguishing feature of DeLP is the property of argument reinstatement.

For example, consider the following de.l.p. P :

a —< b

∼a —< b, c

c —< i

∼c —< i , j

b

i

j

Here, the argument 〈{a —< b}, a〉 for the literal a has a proper defeater, the argu-

ment for ∼a: 〈{(∼a —< b, c), (c —< i)},∼a〉. This one is in turn defeated by the

proper defeater: 〈{∼c —< i , j },∼c〉, that attacks the argument for ∼a in the inner

point c. This third argument reinstates the first, and thus, there is a warrant for

a. Therefore the set of warranted literals from P is W = {a,∼c, b, i , j}

In order to encode the program P in PLP, we have used the translation suggested

in (Brewka, 2001b):

r1: a ← not ∼a, b

r2: ∼a ← not a, b, c

r3: c ← not ∼c, i

r4: ∼c ← not c, i , j

r5: b

r6: i

r7: j

Without any priority, rules r1, r2, r3 and r4 are deleted, and the only derived literals

are the facts b, i , j . If the priorities r2 > r1 and r4 > r3 are added to the program,

then rules r1 and r3 are deleted and the derived literals are ∼c, b, i , j , that is the

argument for ∼c does not reinstate the argument for a.

A more formal comparison between our formalism and the approaches cited above

is issue of future research.

40 Alejandro J. Garćıa and Guillermo R. Simari

9 Conclusions and Future Work

Defeasible Logic Programming combines Logic Programming and Defeasible Argu-

mentation, and provides the possibility of representing information in the form of

defeasible and strict rules in a declarative manner. A query q will be warranted,

if the argument A that supports q is found undefeated by the dialectical analysis.

During the dialectical analysis certain constrains are imposed for averting different

kinds of fallacious argumentation. Thus, DeLP can manage defeasible reasoning

and perform contradictory programs.

The defeasible argumentation basis of DeLP allows to build applications that

deal with incomplete and contradictory information in dynamic domains, where in-

formation may change. Thus, DeLP can be used for representing agent’s knowledge

and for providing an inference engine. New applications of DeLP are in progress.

We expect feedback from them to pursue future extensions.

In (Garćıa & Simari, 1999) a model for parallel defeasible logic programming

is proposed. Besides existing forms of parallel logic programming, new sources of

implicitly exploitable parallelism are considered: building arguments in parallel,

searching for defeaters in parallel, and building a dialectical tree in parallel. An

implementation of parallel DeLP is in preparation. An extension of DeLP with

presumptions is also in study.

The reader may have noticed that the dialectical tree associated with the warrant

procedure could become quite large for non trivial situations. Much of the effort

expended in the implementation was put on the task of performing an efficient

search (Garćıa, 2000; Simari et al., 1994a), However, more work should be done.

Acknowledgments

The authors are grateful to Jürgen Dix, Micheal Gelfond, Ron Loui, Francesca

Toni, Hassan Aı̈t-Kaci, Grigoris Antoniou, Simon Parsons, John Pollock, Veronica

Dahl and Paul Tarau for many helpful comments and suggestions. We wish to

thank especially Carlos Ivan Chesñevar for many helpful discussions and the three

anonymous referees for their useful suggestions. This work was partially supported

by Secretaŕıa de Ciencia y Técnica Universidad Nacional del Sur.

References

Alferes, José J., & Pereira, Luis Moniz. (1994). Contradiction: When avoidance equals
removal, part I. Lecture notes in computer science, 798, 11–23.

Alferes, José J., Pereira, Luis Moniz, & Przymusinski, Teodor C. (1996). Strong and
explicit negation in nonmonotonic reasoning and logic programming. Lecture notes in
computer science, 1126, 143–163.

Antoniou, Grigoris, Billington, David, & Maher, Michel J. (1998). Normal forms for
defeasible logic. Pages 160–174 of: Proceedings of international joint conference and
symposium on logic programming. MIT Press.

Antoniou, Grigoris, Maher, Michael J., & Billington, David. (2000a). Defeasible logic
versus logic programming without negation as failure. Journal of logic programming,
42, 47–57.

Defeasible Logic Programming An Argumentative Approach 41

Antoniou, Grigoris, Billington, David, Governatori, Guido, Maher, Michael J., & Rock,
Andrew. (2000b). A family of defeasible reasoning logics and its implementation. Pages
459–463 of: Proceedings of european conference on artificial intelligence (ecai).

Antoniou, Grigoris, Billington, David, Governatori, Guido, & Maher, Michael J. (2001).
Representation results for defeasible logics. Acm transactions on computational logic,
2(2), 255–287.

Billington, David, De Coster, Koen, & Nute, Donald. (1990). A modular translation from
defeasible nets to defeasible logics. Journal of experimental and theoretical artificial
intelligence, 2, 151–177.

Bondarenko, Andrei, Toni, Francesca, & Kowalski, Robert A. (1993). An assumption-
based framework for non-monotonic reasoning. Proceedings 2nd. international workshop
on logic programming and non-monotonic reasoning, 171–189.

Bondarenko, Andrei, Dung, Phan M., Kowalski, Robert A., & Toni, Francesca. (1997). An
abstract, argumentation-theoretic approach to default reasoning. Artificial intelligence,
93, 63–101.

Brewka, Gerhard. (1996). Well-founded semantics for extended logic programs with dy-
namic preferences. Journal of artificial intelligence research, 4, 19–36.

Brewka, Gerhard. (2001a). Dynamic argument systems: A formal model of argumentation
processes based on situation calculus. Journal of logic and computation, 11(2), 257–282.

Brewka, Gerhard. 2001b (Aug.). On the relation between defeasible logic and well-founded
semantics. Proceedings lpnmr 2001.

Brewka, Gerhard, & Eiter, Thomas. (2000). Prioritizing default logic. Pages 27–46 of:
Hölldobler, Steffen (ed), Intellectics and computational logic: Papers in honor of wolf-
gang bibel. Dordrecht, Boston, London: Kluwer Academic Publishers.

Chesñevar, Carlos I., Maguitman, Ana G., & Loui, Ronald P. (2000). Logical Models of
Argument. Acm computing surveys, 32(4), 337–383.

Chesñevar, Carlos I., Dix, Jürgen, Stolzenburg, Frieder, & Simari, Guillermo R. (2002).
Relating defeasible and normal logic programming through transformation properties.
Theoretical computer science. accepted for publication.

Covington, Michael A., Nute, Donald, & Vellino, Andre. (1997). Prolog programming in
depth. Prentice-Hall.

Dahl, Veronica. (1999). Logic programming and languages. Wiley encyclopedia of electrical
and electronics engineering, 11, 576–580.

Dahl, Veronica, Tarau, Paul, & Li, Renwei. (1997). Assumption grammars for natural
language processing. Fourteenth international conference on logic programming, 256–
270.

Dimopoulos, Yannis, & Kakas, Antonis. (1995). Logic programming without negation
as failure. Pages 369–384 of: Proceedings of 5th. international symposium on logic
programming. Cambridge, MA: MIT Press.

Dix, Jürgen. (1994). Semantics of logic programs: their intuitions and formal properties.
Pages 227–313 of: Fuhrmann, André, & Rott, Hans (eds), Logic, action and information.
Berĺın–New York: de Gruyter.

Dix, Jürgen, & Stolzenburg, Frieder. (1998). A framework to incorporate non-monotonic
reasoning into constraint logic programming. Journal of logic programming, 37, 1–31.

Dung, Phan M. (1991). Negation as hypothesis: An abductive foundation for logic pro-
grams. Proceedings of the 8th. international conference on logic programming. Paris,
France: MIT Press.

Dung, Phan M. (1993a). An argumentation semantics for logic programming with ex-

42 Alejandro J. Garćıa and Guillermo R. Simari

plicit negation. Pages 616–630 of: Proceedings 10th. intenational conference on logic
programming. MIT Press.

Dung, Phan M. (1993b). On the Acceptability of Arguments and its Fundamental Role in
Nomonotonic Reasoning and Logic Programming. Proceedings of the 13th. international
joint conference in artificial intelligence (ijcai), chambéry, francia.

Dung, Phan M. (1995). On the acceptability of arguments and its fundamental role in non-
monotonic reasoning and logic programming and n-person games. Artificial intelligence,
77, 321–357.

Eshghi, Kave, & Kowalski, Robert A. (1989). Abduction compared with negation as
failure. Proceedings of the 6th. international conference on logic programming. Lisbon,
Portugal: MIT Press.

Garćıa, Alejandro J. 1997 (July). Defeasible logic programming: Definition and implemen-
tation. M.Phil. thesis, Computer Science Department, Universidad Nacional del Sur,
Bah́ıa Blanca, Argentina.

Garćıa, Alejandro J. 2000 (Dec.). Defeasible logic programming: Definition, operational
semantics and parallelism. Ph.D. thesis, Computer Science Department, Universidad
Nacional del Sur, Bah́ıa Blanca, Argentina.

Garćıa, Alejandro J., & Simari, Guillermo R. (1999). Parallel defeasible argumentation.
Journal of computer science and technology special issue: Artificial intelligence and
evolutive computation. http://journal.info.unlp.edu.ar/, 1(2), 45–57.

Garćıa, Alejandro J., Simari, Guillermo R., & Chesñevar, Carlos I. 1998 (Aug.). An
argumentative framework for reasoning with inconsistent and incomplete information.
Workshop on practical reasoning and rationality. 13th biennial European Conference
on Artificial Intelligence (ECAI-98).

Garćıa, Alejandro J., Gollapally, Devender, Tarau, Paul, & Simari, Guillermo R. 2000
(Aug.). Deliberative stock market agents using jinni and defeasible logic programming.
Proceedings of esaw’00 engineering societies in the agents’ world, workshop of ecai 2000.

Gelfond, Michael. (1994). Logic programming and reasoning with incomplete information.
Annals of mathematics and artificial intelligence, 12, 89–116.

Gelfond, Michael, & Lifschitz, Vladimir. (1990). Logic programs with classical negation.
Pages 579–597 of: Warren, D., & Szeredi, P. (eds), 7th international conference on logic
programming. MIT Press.

Gelfond, Michel, & Son, Tran C. (1997). Reasoning with prioritized defaults. Pages 164–
223 of: Lecture notes in artificial intelligence 1471, selected papers from the workshop
on logic programming and knowledge representation.

Inoue, Kazuko. (1991). Extended logic programming with default assumptions. Proceed-
ings of 8th. international conference on logic programming.

Kakas, Antonis C., Kowalski, Robert A., & Toni, Francesca. (1993). Abductive logic
programming. Journal of logic and computation, 2, 719–770.

Kakas, Antonis C., Mancarella, Paolo, & Dung, Phan M. (1994). The acceptability se-
mantics for logic programs. Pages 504–519 of: Proceedings of the 11th. international
conference on logic programming. Santa Margherita, Italy: MIT Press.

Kowalski, Robert A., & Toni, Francesca. (1996). Abstract argumentation. Artificial intel-
ligence and law, 4(3-4), 275–296.

Li, Renwei, Pereira, Luis Moniz, & Dahl, Veronica. (1998). Refining action theories with
abductive logic programming. Selected extended papers from the lpkr’97: Ilps’97 work-
shop on logic programming and knowledge representation, 123–138.

Lifschitz, Vladimir. (1996). Foundations of logic programs. Pages 69–128 of: Brewka, G.
(ed), Principles of knowledge representation. CSLI Pub.

Defeasible Logic Programming An Argumentative Approach 43

Loui, Ronald P. (1997a). Alchourrón and Von Wright on Conflict among Norms. Pages
345–353 of: Nute, Donald (ed), Defeasible deontic logic, vol. 263. Synthese Library.

Loui, Ronald P. 1997b (July). et al. Progress on Room 5: A Testbed for Public Interactive
Semi-Formal Legal Argumentation. Proceedings of the 6th. international conference on
artifcial intelligence and law.

Makinson, David, & Schlechta, Karl. (1991). Floating conclusions and zombie paths: two
deep difficulties in the directly skeptical approach to defeasible inference nets. Artificial
intelligence, 48, 199–209.

Nute, Donald. (1988). Defeasible reasoning: a philosophical analysis in prolog. Pages
251–288 of: Fetzer, J. H. (ed), Aspects of artificial intelligence. Kluwer Academic Pub.

Nute, Donald. (1992). Basic defeasible logic. Fariñas del Cerro, Luis (ed), Intensional
logics for programming. Oxford: Claredon Press.

Nute, Donald. (1994). Defeasible logic. Pages 355–395 of: Gabbay, D.M., Hogger, C.J., &
J.A.Robinson (eds), Handbook of logic in artificial intelligence and logic programming,
vol 3. Oxford University Press.

Pereira, Luis Moniz, & Alferes, José J. (1994). Contradiction: When avoidance equals
removal, part II. Lecture notes in computer science, 798, 268–281.

Pollock, John. (1987). Defeasible Reasoning. Cognitive science, 11, 481–518.

Pollock, John. (1995). Cognitive carpentry: A blueprint for how to build a person. MIT
Press.

Pollock, John. (1996). Oscar - A general purpose defeasible reasoner. Journal of applied
non-classical logics, 6, 89–113.

Poole, David L. (1985). On the Comparison of Theories: Preferring the Most Specific
Explanation. Pages 144–147 of: Proc. 9th IJCAI. IJCAI.

Prakken, Henry. (1997). Logical tools for modelling legal argument. a study of defeasible
reasoning in law. Kluwer Law and Philosophy Library.

Prakken, Henry, & Sartor, Giovanni. (1997). Argument-based logic programming with
defeasible priorities. J. of applied non-classical logics, 7(25-75).

Prakken, Henry, & Vreeswijk, Gerard. (2000). Logical systems for defeasible argumen-
tation. D.Gabbay (ed), Handbook of philosophical logic, 2nd ed. Kluwer Academic
Pub.

Simari, Guillermo R., & Loui, Ronald P. (1992). A Mathematical Treatment of Defeasible
Reasoning and its Implementation. Artificial intelligence, 53, 125–157.

Simari, Guillermo R., Chesñevar, Carlos I., & Garćıa, Alejandro J. 1994a (Oct.). Focusing
inference in defeasible argumentation. Iv iberoamerican congress on artificial intelligence
(iberamia’94). Venezuela.

Simari, Guillermo R., Chesñevar, Carlos I., & Garćıa, Alejandro J. 1994b (Nov.). The role
of dialectics in defeasible argumentation. XIV international conference of the chilenean
computer science society.

Toni, Francesca, & Kakas, Antonis C. (1995). Computing the acceptability semantics.
Pages 401–415 of: Proceedings of the 3rd. international workshop on logic programming
and non-monotonic reasoning. Lexington,USA: Springer Verlag.

Verheij, Bart. 1996 (Dec.). Rules, reasons, arguments: formal studies of argumentation
and defeat. Ph.D. thesis, Maastricht University, Holland.

Vreeswijk, Gerard A. W. (1997). Abstract argumentation systems. Artificial intelligence,
90, 225–279.

Xianchang Wang, Jia-Huai You, Li Y. Yuan. (1997). Logic programming without default
negation revisited. Pages 1169–1174 of: Proceedings of ieee international conference on
intelligent processing systems. IEEE.

	Introduction
	The Language
	Defeasible Argumentation
	Rebuttals or Counter-Arguments
	Comparing Arguments

	Defeaters and Argumentation Lines
	Acceptable Argumentation Lines

	Warrant through Dialectical Analysis
	The Warrant Procedure with pruning

	DeLP Extensions
	DeLP with Default Negation
	DeLP with presumptions

	Implementation and Applications
	Related Work
	Defeasible Logic and Argumentation
	Logic Programming

	Conclusions and Future Work
	References

