An argument-based framework to model
an agent’s beliefs in a dynamic environment

1 1

Marcela Capobianco!, Carlos I. Chesfievar!-2, and Guillermo R. Simari

L Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering
Universidad Nacional del Sur — Av. Alem 1253, (8000) Bahia Blanca, ARGENTINA
EMAIL: {mc,grs}@cs.uns.edu.ar
2 Artificial Intelligence Research Group — Departament of Computer Science
Universitat de Lleida — Campus Cappont — C/Jaume II, 69 — E-25001 Lleida, SPAIN
EMAIL: cicQeup.udl.es

Abstract. One of the most difficult problems in multiagent systems in-
volves representing knowledge and beliefs of agents in dynamic environ-
ments. New perceptions modify an agent’s current knowledge about the
world, and consequently its beliefs. Such revision and updating process
should be performed efficiently by the agent, particularly in the context
of real time constraints.

This paper introduces an argument-based logic programming language
called Observation-based Defeasible Logic Programming (ODeLP). An
ODeLP program is used to represent an agent’s knowledge in the con-
text of a multiagent system. The beliefs of the agent are modeled with
warranted goals computed on the basis of the agent’s program. New per-
ceptions from the environment result in changes in the agent’s knowl-
edge handled by a simple but effective updating strategy. The process of
computing beliefs in a changing environment is made computationally
attractive by integrating a “dialectical database” with the agent’s pro-
gram, providing precompiled information about inferences. We present
algorithms for creation and use of dialectical databases.

1 Introduction

Knowledge representation issues play a major role in practically all areas of
Artificial Intelligence, and MAS is not an exception. Well-known problems in
MAS involve the need of complex abilities for reasoning, planning and acting in
dynamic environments ([1]). In the last years, argumentation has gained wide
acceptance in the multiagent systems (MAS) community by providing tools for
designing and implementing different features which characterize interaction a-
mong rational agents.

Logic programming approaches to argumentation [2,3] have proven to be
suitable formalization tools in the context of MAS, as they combine the pow-
erful features provided by logic programming for knowledge representation to-
gether with the ability to model complex, argument-based inference procedures
in unified, integrated frameworks.



Most MAS approaches based on logic programming rely on extended logic
programming (ELP) ([4]) as underlying formalism. Thus, the agent’s knowledge
is codified in terms of an ELP program and the well-founded semantics of the
program represents the agent’s beliefs. Although ELP is expressive enough to
capture different kinds of negation (strict and default negation), it has limita-
tions for modeling incomplete and potentially contradictory information. In a
MAS context it is common that agents require such capabilities, as they interact
with the environment and among themselves, processing new inputs, changing
dynamically their beliefs and intentions, etc. Clearly, in such a setting, the ar-
gumentation formalism underlying such MAS should be able to incorporate new
information into the knowledge base of the agent and reason accordingly.

In this paper we present (ODeLP) (Observation based Defeasible Logic Pro-
gramming), an argument-based formalism for agents reasoning in dynamic en-
vironments. Some of the basic notions of ODeLP come from Defeasible Logic
Programming [5] (DeLP). As in DeLP, the ODeLP formalism uses a knowledge
representation language in the style of logic programming and inference is based
on argumentation.

To provide the agents with the ability to sense the changes in the world and
integrate them into its existing beliefs, in ODeLP we have adapted the knowl-
edge representation system to handle perceptions. Real time issues also play an
important role when modeling agent interaction. In an argument-based MAS
setting, a timely interaction is particularly hard to achieve, as the inference pro-
cess involved is complex and computationally expensive. To solve this issue, we
will enhance the behavior of ODeLP by incorporating dialectical databases, that
is, data structures for storing precompiled knowledge. These structures can be
used to speed up the inference process when answering future queries.

The remainder of this paper is organized as follows. Section 2 summarizes the
main features of the ODeLP formalism. Section 3 reviews briefly previous work on
truth maintenance systems, which provided the basis for our notion of dialectical
databases, and introduces the notion of dialectical databases, discussing its role
as a tool to speed up inference in the ODeLP formalism. Section 4 presents a
worked example. Finally, section 5 summarizes the conclusions that have been
obtained.

2 ODeLP: Observation-based DeLP

Defeasible Logic Programming (DeLP) [5] provides a language for knowledge rep-
resentation and reasoning that uses defeasible argumentation to decide between
contradictory conclusions through a dialectical analysis. Codifying the knowledge
base of the agent by means of a DeLP program provides a good trade-off between
expressivity and implementability. Extensions of DeLP that integrate possibilis-
tic logic and vague knowledge along with an argument-based framework have
also been proposed [6]. Recent research has shown that DeLP provides a suitable
framework for building real-world applications (e.g. clustering algorithms [7],



intelligent web search [8] and critiquing systems [9]) that deal with incomplete
and potentially contradictory information.

In such applications, DeLP is intended to model the behavior of a single
intelligent agent in a static scenario. DeLLP lacks the appropriate mechanisms
to represent knowledge in dynamic environments, where agents must be able to
perceive the changes in the world and integrate them into its existing beliefs [10].
The ODeLP framework aims at solving this problem by modeling perception as
new facts to be added to the agent’s knowledge base. Since adding such new
facts may result in inconsistencies, an associated updating process is used to
solve them. The definitions that follow summarize the main features of ODeLP.

2.1 Language

The language of ODeLP is based on the language of logic programming. In what
follows we use concepts like signature, alphabet and atoms with their usual mean-
ing. Literals are atoms that may be preceded by the symbol “~” denoting strict
negation, as in ELP. ODeLP programs are formed by observations and defeasible
rules. Observations correspond to facts in the context of logic programming, and
represent the knowledge an agent has about the world. Defeasible rules provide

a way of performing tentative reasoning as in other argumentation formalisms
[11,12].

Definition 1. [Observation]-[Defeasible Rule] An observation is a ground lit-
eral L representing some fact about the world, obtained through the perception
mechanism, that the agent believes to be correct. A defeasible rule has the form
Lo —= L1, Lo, ..., L, where Lo is a literal and L1, Lo, . .., Ly is a non-empty finite
set of literals.

Definition 2. [ODeLP Program]An ODeLP program is a pair (¥, A), where
¥ is a finite set of observations and A is a finite set of defeasible rules. In a

program P, the set ¥ must be non-contradictory (i.e., it is not the case that
Q €V and ~Q €W, for any literal Q).

Ezxample 1. Fig. 1 shows an ODeLP program for assessing the status of employees
in a given company. Observations describe that John has a poor performance at
his job, John is currently sick, Peter also has a poor performance and Rose is an
applicant that demands a high salary. Defeasible rules express that the company
prefers to hire employers that require a low salary. An employee that demands
a high salary is usually not hired, but in the exceptional case where he/she has
good references it is recommended to hire the applicant. The remaining rules
deal with the evaluation of the employees’ performance, according with their
responsibility in the job.

2.2 Inference mechanism

Given an ODeLP program P, a query posed to P corresponds to a ground literal
@ which must be supported by an argument [11,5]. Arguments are built on



poor_performance (john) .

sick(john).

poor_performance (peter) .

high_salary(rose).

applicant (rose).

good.references (rose) .

hire(X) <= ~high_salary(X), applicant(X).
~hire(X) — high salary(X), applicant(X).
hire(X) — high_salary(X), applicant(X), good_references(X).
suspend (X) — ~responsible(X).

~suspend(X) — responsible(X).

~responsible(X) — poor_performance (X).
responsible(X) — good_performance(X) .
responsible(X) — poor_performance(X), sick(X).

Fig.1. An ODeLP program for assessing the status of employees in a company

the basis of a defeasible derivation computed by backward chaining applying the
usual SLD inference procedure used in logic programming. Observations play the
role of facts and defeasible rules function as inference rules. In addition to provide
a proof supporting a ground literal, such a proof must be non-contradictory and
minimal for being considered as an argument in ODeLP. Formally:

Definition 3. [Argument — Sub-argument]Given a ODeLP program P, an ar-
gument A for a ground literal @, also denoted (A, Q), is a subset of ground
instances of the defeasible rules in P such that:

1. there exists a defeasible derivation for Q from ¥ U A,
2. WU A is non-contradictory,
3. A is minimal with respect to set inclusion in satisfying (1) and (2).

Given two arguments (A1, Q1) and (Az, Q2), we will say that (A1, Q1) is a sub-
argument of (A2, Q2) iff A1 C As.

Note that to use defeasible rules in arguments we must first obtain their ground
instances, changing variables for ground terms, such that variables with the same
name are replaced for the same term.

As in most argumentation frameworks, arguments in ODeL.P can attack each
other. This situation is captured by the notion of counterargument. Defeat among
arguments is defined combining the counterargument relation and a preference
criterion (partial order) “=<”. Specificity [13,11, 14] is the syntactic-based prefer-
ence criterion used by default in ODeLP, although other alternative criteria can
be easily used. Specificity favors those arguments which are more direct or more
informed (i.e., contain more specific information).

Definition 4. [Counter-argument]An argument (A;, Q1) counter-argues an ar-
gument (Aa, Q2) at a literal Q if and only if there is a sub-argument (A, Q) of
(Az,Q2) such that Q1 and Q are complementary literals.



Definition 5. [Defeater]An argument (A1, Q1) defeats (Az,Q2) at a literal Q
if and only if there exists a sub-argument (A, Q) of (A2, Q2) such that (A1, Q1)
counter-argues (A2, Q2) at Q, and either:

1. (A1, Q1) is strictly preferred over (A, Q) according to the preference criterion
“<X7 (then (A1,Q1) is a proper defeater of (A2, Q2)), or

2. (A1,Q1) is unrelated to (A, Q) by “X” (then (A1, Q1) is a blocking defeater
of (A2, Q2))-

Defeaters are arguments and may in turn be defeated. Thus, a complete
dialectical analysis is required to determine which arguments are ultimately ac-
cepted. Such analysis results in a tree structure called dialectical tree, in which
arguments are nodes labeled as undefeated (U-nodes) or defeated (D-nodes)
according to a marking procedure. Formally:

Definition 6. [Dialectical Tree] The dialectical tree for an argument (A,Q),
denoted T 4.y, is recursively defined as follows:

1. A single node labeled with an argument (A, Q) with no defeaters (proper or
blocking) is by itself the dialectical tree for (A, Q).

2. Let (A1, Q1), (A2,Q2), ..., (An, Qn) be all the defeaters (proper or blocking)
for (A, Q). The dialectical tree for (A, Q), Tia,q), is obtained by labeling the
root node with (A, Q), and making this node the parent of the root nodes for
the dialectical trees of (A1,Q1), (A2, Q2), ..., (An, Qn)

Definition 7. [Marking of the Dialectical Tree]Let (A1, Q1) be an argument and
T 4,,Qy) its dialectical tree, then:

1. All the leaves in Ti 4, g,y are marked as a U-node.

2. Let (A2,Q2) be an inner node of Ti4, q,). Then (A2, Q2) is marked as
U-node iff every child of (As, Q2) is marked as a D-node. The node (Az, Q2)
is marked as a D-node if and only if it has at least a child marked as U-node.

Dialectical analysis may in some situations give rise to fallacious argumen-
tation [15]. In ODeLP dialectical trees are ensured to be free of fallacies [14] by
applying additional constraints when building argumentation lines (the different
possible paths in a dialectical tree). A detailed analysis of these issues is outside
the scope of this paper.

Given a query @ and an ODeLP program P, we will say that @ is warranted
wrt P iff there exists an argument 74 gy such that the root of its associated
dialectical tree 7 4 gy is marked as a U-node.

Definition 8. [Warrant] Let A be an argument for a literal Q, and let T 4 ¢
be its associated dialectical tree. A is a warrant for Q if and only if the root of
T 4,q) s marked as a U-node.

Solving a query @ in ODeLP accounts for trying to find a warrant for @, as
shown in the following example.



Example 2. Consider the program shown in Example 1, and let suspend (john)

be a query wrt that program. The search for a warrant for suspend (john) will re-

sult in an argument (A, suspend (john)) with two defeaters (55, ~suspend (john))
and (C,responsible(john)), where

— A = {suspend(john) —~ ~responsible(john);
~responsible(john) — poor_performance(john) }.
— B = {~suspend(john) — responsible(john);
responsible(john) — poor_performance(john),sick(john) }.
— C = {responsible(john) — poor_performance(john),sick(john) }.

Using specificity as the preference criterion, (55, ~suspend(john)) is a blocking
defeater for (A, suspend(john)), and (C,responsible(john)) is a proper de-
feater for (A, suspend(john)). The associated dialectical tree is shown in Fig.2.
The marking procedure determines that the root node (A, suspend(john)) is a
D-node and hence suspend (john) is not warranted.

Fig. 2. Dialectical tree from Example 2

2.3 Modeling Beliefs and Perceptions in ODeLP

ODeLP models the beliefs of an agent in a simple way: given a program P
representing an agent’s knowledge, a literal @ is believed by the agent iff @
is warranted. In particular, different doxastic attitudes are distinguished wrt a
given literal Q:

— Believe that @ is true whenever @) is warranted;
— Believe that @ is false (i.e., believe ~Q) whenever ~@Q is warranted; and
— Believe that @ is undecided whenever none of the above cases apply.

Consistency is a basic property for agent’s beliefs, in the sense that it is not
possible to believe simultaneously in a literal @ and its complement ~Q [16].
Agents using ODeLP naturally satisfy this requirement. 3

3 For a full discussion of ODeLP properties and their proof the interested reader can
consult [14].



In ODeLP, the mechanism for updating the knowledge base of an agent is
simple but effective. We assume that perception is carried out by devices that
detect changes in the world and report them as new facts (literals). The actual
devices used will depend on the particular application domain, and their char-
acterization is outside the scope of this paper. We also make the assumption
that the perception mechanism is flawless, and new perceptions always super-
sede old ones. Any perception will be reported as a new fact « to be added to
the set of observations ¥. If this new perception « is contradictory with ¥, then
necessarily ~« € ¥. In such a case, we use a simple update function [17] that
computes a new observation set ¥’ as W\{~a} U «a. Thus new perceptions are
always preferred: with a flawless perception mechanism the source of the conflict
must be a change in the state of world.

3 Precompiling Knowledge in ODeLP

In truth maintenance systems (TMS) the use of precompiled knowledge helps
improve the performance of problem solvers. A similar technique will be used
in ODeL.P to address the real time constrains required in a MAS setting. Next
we give a brief overview of TMS and then we describe the mechanism used for
precompiling knowledge in ODeLP.

3.1 Truth maintenance systems: a brief overview

Truth Maintenance Systems (TMS) were defined by Doyle in [18] as support
tools for problems solvers. The function of a TMS is to record and maintain
the reasons for an agent’s beliefs. Doyle describes a series of procedures that
determine the current set of beliefs and update it in accord with new incoming
reasons. Under this view, rational thought is deemed as the process of finding
reasons for attitudes [18]. Some attitude (such as belief, desire, etc.) is rational
if it is supported by some acceptable explanation.

TMS have two basic data structures: nodes, which represent beliefs, and jus-
tifications which model reasons for the nodes. The TMS believes in a node if it
has a justification for the node and believes in the nodes involved in it. Although
this may seem circular, there are assumptions (a special type of justifications)
which involve no other nodes. Justifications for nodes may be added or retracted,
and this accounts for a truth maintenance procedure [18], to make any necessary
revisions in the set of beliefs. An interesting feature of TMS is the use of a par-
ticular type of justifications, called non-monotonic, to make tentative guesses.
A non-monotonic justification bases an argument for a node not only on current
beliefs in certain nodes, but also on lack of beliefs in other nodes. Any node
supported by a non-monotonic justification is called an assumption.

TMS solve part of the belief revision problem in general problem solvers and
provide a mechanism for making non-monotonic assumptions. As Doyle mentions
in [18] performance is also significantly improved, Even though the overhead
required to record justifications for every program belief might seem excessive,



we must consider the expense of not keeping these records. When information
about derivations is discarded, the same information must be continually re-
derived, even when only irrelevant assumptions have changed.

3.2 Dialectical databases in ODeLP

Based on the existing work in TMS, our goal is to integrate precompiled knowl-
edge into an agent framework based on ODeLP in order to address real-time
constraints in a MAS setting. To do so, we want an ODeLP-based agent to be
able to answer queries efficiently, by avoiding recomputing arguments which were
already computed before.

Note that there are different options for integrating precompiled knowledge
with an ODeLP program P. A simple approach would be recording every argu-
ment that has been computed so far. However, a large number of arguments can
be obtained from a relatively small program, resulting thus in a large database.
On the other hand, many arguments are obtained using different instances of
the same defeasible rules. Recording every generated argument could result in
storing many arguments which are structurally identical, only differing in the
constant names being used to build the corresponding derivations.

Another important problem arises with perceptions. Note that the set of
arguments that can be built from a program P = (¥, A) also depends on the
observation set ¥. When ¥ is updated with new perceptions, arguments which
were previously derivable from P may no longer be so. If precompiled knowl-
edge depends on ¥, it should be updated as new perceptions appear. Clearly
such an alternative is not suitable, as new perceptions are frequent in dynamic
environments. As a consequence, precompiled knowledge should be managed
independently from the set of observations ¥.

Based on the previous analysis we will define a database structure called
dialectical database, which will keep a record of all possible potential arguments in
an ODeLP program P as well as their defeat relationships among them. Potential
arguments are formed by non-grounded defeasible rules, depending thus only on
the set of rules A in P. As we will discuss later, attack relationships among
potential arguments can be also captured. Potential arguments and the defeat
relationships among them will be stored in the dialectical database. Next we
introduce some formal definitions:

Definition 9. [Instance for a set of defeasible rules] Let A be a set of defeasible
rules. A set B formed by ground instances of the defeasible rules in A is an
instance of A iff every instance of a defeasible rule in B is an instance of a
defeasible rule in A.

Ezample 3. If A ={ s(X) —=~rX); ~r(X) =pX)} then B = { s(t) = ~r(t);
~r(a) = p(a)} is an instance of A.

Definition 10. [Potential argument] Let A be a set of defeasible rules. A subset
A of A is a potential argument for a literal QQ, noted as (A, Q) if there exists a
non-contradictory set of literals & and an instance B of the rules in A such that
(B, Q) is an argument wrt (P, A).



In the definition above the set @ stands for a state of the world (set of
observations) in which we can obtain the instance B from the set A of defeasible
rules such that (B, Q) is an argument (as defined in Def.3). Note that the set ¢
must necessarily be non-contradictory to model a coherent scenario.

Precompiled knowledge associated with an ODeLP program P = (¥, A) will
involve the set of all potential arguments that can be built from P as well as the
defeat relationships among them.

— Potential arguments: to obtain and record every potential argument of
P we have devised an algorithm that efficiently identifies all potential argu-
ments as distinguished subsets of the rules in A.* Potential arguments will
save time in computing arguments when solving queries. Instead of comput-
ing a query for a given ground literal @), the ODeLP interpreter will search
for a potential argument A for @) such that a particular instance B of A is
an argument for @ wrt P.

— Defeat relationships among potential arguments: Recording informa-

tion about defeat relationships among potential arguments is also useful as it
helps to speed up the construction of dialectical trees when solving queries,
as we will see later. To do this, we extend the concepts of counterargu-
ment and defeat for potential arguments. A potential argument (A, Q1))
counter-argues ((A2,Q2)) at a literal @ if and only if there is a potential
sub-argument (4, Q)) of (A, Q2)) such that 1 and @ are contradictory
literals.® Note that potential counter-arguments may or may not result in
a real conflict between the instances (arguments) associated with the corre-
sponding potential arguments. In some cases instances of these arguments
cannot co-exist in any scenario (e.g., consider two potential arguments based
on contradictory observations).
The notion of defeat is also extended to potential arguments. Since speci-
ficity is a syntactic-based criterion, a particular version of specificity [14] is
applicable to potential arguments, determining when a potential argument
is more informed or more direct than another.

Using potential arguments and their associated defeat relation we can for-
mally define the notion of dialectical databases associated with a given ODeLP
program P.

Definition 11. [Dialectical Database| Let P = (¥, A) be an ODeLP program.
The dialectical database of P, denoted as DB, is a 3-tuple (PotArg(A), Dy, D)
such that:

1. PotArg(A) is the set {{A1,@Q1), .., {4k, Qr)} of all the potential argu-
ments that can be built from A.

4 For space reasons this algorithm is not detailed in this paper. The interested reader
is referred to [14].

® Note that Q(X) and ~Q(X) are contradictory literals although they are non-
grounded. The same idea is applied to identify contradiction in potential arguments.



2. D, and Dy, are relations over the elements of PotArg(A) such that for every

pair ({A1,Q1)), (A2, Q2) in D, (respectively Dy) it holds that (Aa, Q) is
a proper (respectively blocking) defeater of (A1, Q1)).

Ezxample 4. Consider the program in example 1. The dialectical database of P
is composed by the following potential arguments:

— (A1, hire(X))),
where Ay = {hire(X) — ~high salary(X), applicant(X)}.
— (A2, ~hire(X))),
where Ay = {~hire(X) < high_salary(X), applicant(X)}.
— ({(As,hire(X))),
where As = {hire(X) — high salary(X), applicant(X),
good_references(X)}.
— (B, suspend (X)),
where B; = {suspend(X) — ~responsible(X) }.
— (B2, suspend (X)),
where By = {suspend(X) — ~responsible(X);
~responsible (X) — poor_performance(X) }.
— (B3, ~suspend (X)),
where B3 = {~suspend(X) — responsible(X) }.
— {(By4, ~suspend (X)),
where By = {~suspend(X) — responsible(X);
responsible(X) — good_performance(X) }.
— {(Bs, ~suspend (X)),
where Bs = {~suspend(X) — responsible(X);
responsible(X) — poor_performance(X), sick(X)}.
— ((C1, responsible (X)),
where C7 = {responsible(X) — poor_performance(X) }.
— {(Cs, ~responsible (X)),
where Cy = {~responsible(X) — poor_performance(X) }.
— ((C5,responsible (X)),
where C3 = {responsible(X) — poor_performance(X), sick(X)}.

and the defeat relations:

- Dp = {(A?MAQ)a (C?n 02)7 (C37B2)}

- Dy = {(Ala A2)7 (AQ, Av), (Cla Ca), (CQ, 01)7 (Clv Bs), (CQ, B4)7 (Bh Bs),
(Blv B4)a (B37 Bl)v (B4a Bl)v (Blv B5)a (BS, Bl)v (327 B5)a (BS, B2)7 (BQ, BS)v

(B3, B2)}-

The relations are also depicted in figure 3, where A; properly defeats A is
indicated with an arrow from A; to Ay and blocking defeat is distinguished with
a dotted arrow.



Ci o > Oy Cs

N

IB5

Fig. 3. Dialectical database corresponding to Example 4.

3.3 Speeding up inference in ODeLP with dialectical databases

Given a ODeLP program P, its dialectical database DB o can be understood as
a graph from which all possible dialectical trees computable from P can be ob-
tained. In the original ODeLP framework (as detailed in Section 2), solving a
query @ wrt a given program P = (¥, A) accounted for obtaining a warranted
argument (A4, Q). As already discussed, computing warrant involves many in-
termediate steps which are computationally expensive (computing arguments,
detecting defeaters, building a dialectical tree, etc.).

Using the dialectical database we can speed up the inference process in
ODeLP by keeping track of all possible potential arguments and the defeat rela-
tionshisp among them. Given a query @, the extended ODeLP framework (i.e.
including a dialectical database) will select first a potential argument ((A,S))
(such that @ is a ground instance of S) that can be instantiated into (A, Q),
supporting . From the D, and Dj, relationships in DB A the potential defeaters
for (A, @) can be identified, and also instantiated.

To describe how the inference process is assisted by dialectical databases
we present algorithm 1. It obtains a warrant for a query () from a program
P = (¥, A). To do this, the algorithm considers the potential arguments (A, S))
such that @ is an instance of S, an tries to find an instance (B, Q) of (A, S)) that
is also an argument with respect to P, according to definition 9. This is done in
function argument which in case such instance exists returns it in the parameter
(B, Q). Next, (B, Q) is analyzed to see whether it is a warrant for ). To do this,
the relations D, and Dy, are used to find the defeaters of (B, Q). Once the system
finds an instance of the potential defeaters that is in conflict with (B, Q), the



function acceptable checks if they are arguments with respect to P. Then the
state function (see algorithm 2) determines the marking of these defeaters (i.e.,
if they are marked as U-nodes or D-nodes) and finally this information is used
to compute the state of (B, Q).

Algorithm 1 Inference process
input: P = (¥, A), Q
output:(B, Q) (a warrant for Q, if any)

For every ((A,S)) in PotArg(A) such that argument({(A, S)),Q,P,(B,Q))
//Looks for instances of the potential arguments that support Q
state := undefeated
For every (A2, X)) in PotArg(A) such that (A2, A1) € D, or (A2, A1) € Dy
//and then determines the state of their defeaters
For every instance (C, R) of (A2, X)) such that (C, R) defeats (B, Q)
and acceptable({C, R),P)
if state((C, R), P, 0, {(B,Q)}) = undefeated
then state := defeated
//Sets the state of the main argument according to its defeaters
if state = undefeated
then return((5, Q))
//If any of the instances remains undefeated it is a warrant

The state algorithm used in the inference process takes as input an ODeLP
program P, an argument (B, Q) based on it, and the interference and support
argumentative lines up to this point, respectively denoted as IL and SL. Simply
put, IL represents the set of arguments with an even level in the actual path of
the tree under construction, and SL the arguments with an odd level. Then the
state algorithm works like algorithm 1, analyzing the defeaters of B to define
its state. However, one extra condition must be met: defeaters must also comply
with the rules established for avoiding fallacies [14]. This test is performed by
the function valid.

To conclude, figure 4 summarizes the main elements of the ODeLP-based
agent architecture. The agent’s knowledge is represented by an ODeLP program
P. Perceptions from the environment result in changes in the set of observations
in P, handled by an appropriate updating mechanism as discussed previously. In
order to solve queries from other agents, the agent relies on the ODeLP inference
engine. Queries are speeded up by first searching on the potential arguments
stored in the dialectical database, applying the algorithms discussed before. The
final answer to a given query will be yes, no or undecided, according to the
warrant status of the query with respect to P.



Algorithm 2 State
input: (B,Q), P, IL, SL
output:state

state := undefeated

For every pair (A1, A2) € D, or Dy, such that (B, Q) is an instance of A;

//Uses the stored defeat relation to find the defeaters of (B, Q)

For every instance (C,S) of Az such that acceptable((C, S),P) and

valid((C, S),IL,SL)

//Then checks for every defeater whether it gives raise to fallacies.
if (B,Q) is in SL and state({C, S),P,IL,SL U {B}) = undefeated

then state := defeated

if (B, Q) is in IL and state((C, S),P,IL U {B},SL) = undefeated

then state := defeated

//The recursive call does the same for the defeaters of (C,.S)

return(state)

ODeLP program

Observations

Defeasible
Rules

Dialectical
Base

Updating ]
Mechanism Perceptions
ODeLP
Queries
Inference
Engine Answers

Fig. 4. Agent architecture using ODeLP as underlying framework



4 A worked example

In this section we present a toy example to illustrate the use of a dialectical
database to speed up inference in ODeLP. Let us consider the program P in
Example 1 as an agent’s knowledge to model the status of different employees
in a company. The associated dialectical database DB 4 is shown in Example 4.

Suppose that the agent has to decide whether John should be suspended or
not, considering the query suspend(john). As shown in Example 2, solving this
query wrt P involved a dialectical tree with three arguments (see Figure 2). Let
us analyze now how the agent would proceed to perform the same inference us-
ing the dialectical database D5 4. Following Algorithm 1, the potential argument
(B2, @)) will be instantiated resulting in the argument (A, Q), with

A = {~suspend(john) — responsible(john);
responsible(john) — poor_performance (john),sick(john) }

From the dialectical database DB it follows that ((Ba,@)) has defeaters
{(Bs,Qs3)) and (Bs,Q5)) (see the list of pairs in D, in Example 4), which are re-
spectively instantiated to (B,~suspend(john)) and (C, responsible(john)), with:

B = {~suspend(john) — responsible(john);
responsible(john) — poor_performance(john),sick(john)

C = {responsible(john) — poor_performance(john),sick(john) }

Note that from the information in DB associated with ((Bs, Q3)) and {(Bs, Q5))
there are no more pairs in D, or Dy to consider (i.e, there are no more links in the
graph to new defeaters for these potential arguments that can be instanciated to
defeat B or C). As a consequence, a dialectical tree identical to the one shown in
Figure 2 has been computed on the basis of the potential arguments present in
the dialectical database and their associated defeat relationships. There are no
more possible potential arguments supporting suspend (john). Therefore there
is no warrant for suspend(john).

Consider now a different situation for the same sample program P. Suppose
that the facts applicant(susan) and high salary(susan) are added as new
observations to ¥. In order to solve the query ~hire(susan) wrt to P the same
dialectical database DB can be used but relying on different potential argu-
ments as those used above. Now other instances can be obtained relying on the
new perceived facts. In this case, the potential argument (Ao, Q2)) is instanti-
ated to (D,~hire(susan)), with

D = {~hire(susan) — high salary(susan), applicant(susan)}
From the information available in DBa a defeater for ((As,Q2) is detected,

namely ((A1,@1)). However there is no argument which can be obtained as an
instance of (A1, Q1)) wrt the current set ¥, and hence there is no defeater for



(D,~hire(susan)). Therefore ~hire (susan) is warranted (as it is supported by
an argument (D,~hire(susan)) with no defeaters).

The applicant Susan may ask now for a lower salary, given that she wants to
get the job. This results in a new perception for the agent, updating ¥ by adding
~high_salary(susan) and consequently removing high salary(susan). As in
the previous situations, no change is performed on the existing dialectical database.
Nevertheless, the set of beliefs of the agent changes: ~hire (susan) is no longer
believed, since no argument supporting ~hire (susan) can be built as an in-
stance of a potential argument in DB . On the contrary, hire(susan) is now
in the set of beliefs as it is warranted by a tree with a single node: argument
& = {hire(susan) — ~high salary(susan), applicant(susan) }.

5 Conclusions and future work

Solid theoretical foundations for agent design should be based on proper for-
malisms for knowledge representation and reasoning [19]. Thus, we have defined
a framework for representing knowledge and beliefs of agents in dynamic envi-
ronments, where new perceptions can modify the agent’s view about its world.

To comply with real time issues when modeling agent interaction in a MAS
setting we have proposed the notion of dialectical databases. We have discussed
the main issues in the integration of this component into ODeLP, such as build-
ing the dialectical database, adapting the specificity criterion for potential argu-
ments and modifying the inference process to take advantage of the new com-
ponent. Based on this, we can affirm that the use of precompiled knowledge
can improve the performance of argument-based systems in the same way Truth
Maintenance Systems assist general problem solvers. We believe that this tech-
nique can also be applied to other argumentative frameworks, allowing its use
in a new set of applications.

Part of our current work involves extending the analysis of ODeLP properties
presented in [14] in the context of multiagent systems. We are also working
on a complexity analisis of ODeLP that considers the construction and use of
dialectical databases, and confirms the results obtained empirically.

Acknowledgements

This research was partially supported by Projects TIC2001-1577-C03-01 and
TIC2003-00950, by Ramén y Cajal Program (Ministerio de Ciencia y Tecnologia,
Spain), by CONICET (Argentina), by CIC (Argentina), by the Secretaria Gen-
eral de Ciencia y Tecnologia de la Universidad Nacional del Sur and by Agencia
Nacional de Promocion Cientifica y Tecnoldgica (PICT 2002 No. 13096). The
authors would like to thank anonymous reviewers for providing helpful comments
to improve the final version of this paper.



References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Wooldridge., M.J.: Introduction to Multiagent Systems. John Wiley and Sons
(2002)

Chesifievar, C.I., Maguitman, A., Loui, R.: Logical Models of Argument. ACM
Computing Surveys 32 (2000) 337-383

Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In
Gabbay, D., ed.: Handbook of Philosophical Logic. Volume 4. Kluwer Academic
Publisher (2002) 219-318

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing (1991) 365-385

Garcia, A., Simari, G.: Defeasible Logic Programming: An Argumentative Ap-
proach. Theory and Practice of Logic Programming 4 (2004) 95-138

Chesiievar, C., Simari, G., Alsinet, T., Godo, L.: A logic programming framework
for possibilistic argumentation with vague knowledge. In: Proc. of Uncertainty in
Artificial Intelligence Conference (UAI 2004), Banff, Canada (to appear). (2004)
Gomez, S., Chesnevar, C.: A Hybrid Approach to Pattern Classification Using
Neural Networks and Defeasible Argumentation. In: Proc. of Intl. 17th FLAIRS
Conference. Palm Beach, FL, USA, AAAI (2004) 393-398

Chesiievar, C., Maguitman, A.: ARGUENET: An Argument-Based Recommender
System for Solving Web Search Queries. In: Proc. of Intl. IEEE Conference on
Intelligent Systems IS-2004. Varna, Bulgaria (to appear). (2004)

Chesifievar, C., Maguitman, A.: An argumentative approach to assesing natural
language usage based on the web corpus. In: Proc. of European Conference on
Artificial Intelligence (ECAI 2004). Valencia, Spain (to appear), ECCAI (2004)
Pollock, J.L.: Taking Perception Seriously. In: Proceedings of the 1st International
Conference on Autonomous Agents. (1997) 526-527

Simari, G.R., Loui, R.P.: A Mathematical Treatment of Defeasible Reasoning and
its Implementation. Artificial Intelligence 53 (1992) 125-157

Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. Journal of Applied Non-classical Logics 7 (1997) 25-752

Poole, D.L.: On the Comparison of Theories: Preferring the Most Specific Expla-
nation. In: Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, IJCAI (1985) 144-147

Capobianco, M.: Argumentacién rebatible en entornos dindmicos. PhD thesis,
Universidad Nacional del Sur, Bahia Blanca, Argentina (2003)

Simari, G.R., Chesnevar, C.I., Garcia, A.J.: The Role of Dialectics in De-
feasible Argumentation. In: Proceedings of the XIV Conferencia Internacional
de la Sociedad Chilena para Ciencias de la Computacién. (1994) 111-121
http://cs.uns.edu.ar/giia.html.

Alferes, J.J., Pereira, L.M.: On logic program semantics with two kinds of nega-
tion. In: Proceedings of Joint International Conference and Symposium on Logic
Programm, Washington, USA (1992) 574-588

Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base
and revising it. In P.Gardenfors, ed.: Belief Revision. Cambridge University Press
(1992) 183203

Doyle, J.: A Truth Maintenance System. Artificial Intelligence 12 (1979) 231-272
Baral, C., Gelfond, M.: Reasoning Agents in Dynamic Domains. In Minker, J., ed.:
Workshop on Logic-Based Artificial Intelligence, College Park, Maryland, Com-
puter Science Department, University of Maryland (1999)



