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Abstract. In the last years, there has been an increasing demand of
a variety of logical systems, prompted mostly by applications of logic
in AI and other related areas. Labeled Deductive Systems (LDS) were
developed as a flexible methodology to formalize such a kind of complex
logical systems.
Defeasible argumentation has proven to be a successful approach to for-
malizing commonsense reasoning, encompassing many other alternative
formalisms for defeasible reasoning. Argument-based frameworks share
some common notions (such as the concept of argument, defeater, etc.)
along with a number of particular features which make it difficult to
compare them with each other from a logical viewpoint.
This paper introduces LDSAR, a LDS for defeasible argumentation in
which many important issues concerning defeasible argumentation are
captured within a unified logical framework. We also discuss some logical
properties and extensions that emerge from the proposed framework.

1 Introduction and motivations

Labeled Deductive Systems (LDS) [Gab96] were developed as a rigorous but
flexible methodology to formalize complex logical systems, such as temporal
logics, database query languages and defeasible reasoning systems. In labeled
deduction, the usual notion of formula is replaced by the notion of labeled for-
mula, expressed as Label :f, where Label represents a label associated with a wff
f. A labeling language L

Labels
and knowledge-representation language L

KR
can be

combined to provide a new, labeled language, in which labels convey additional
information also encoded at object-language level. Derived formulas are labeled
according to a family of deduction rules, and with agreed ways of propagating
labels via the application of these rules.

In the last decade defeasible argumentation [CML00,PV99] has proven to be a
successful approach to formalizing commonsense reasoning, providing a suitable
formalization that encompasses many other alternative formalisms. Thus, most
argument-based frameworks share some common notions (such as the concept



of argument, defeater, warrant, etc.) along with a number of particular features
which make it difficult to compare them with each other from a logical viewpoint.

The study of logical properties of defeasible argumentation motivated the
development of LDSAR [Che01,SCG01,CS01], an LDS-based argumentation for-
malism. In LDSAR two languages L

Labels
(representing arguments and their inter-

relationships) and L
KR

(representing object-level knowledge) are combined into a
single, labeled language L

Arg
. Inference rules are provided in L

Arg
to characterize

argument construction and their relationships. LDSAR provides thus a common
framework for different purposes, such as studying logical properties of defeasible
argumentation, comparing and analyzing existing argument-based frameworks
and developing extensions of the original framework by enriching the labeling
language L

Labels
.

This paper is structured as follows. First, in section 2 we discuss the main
definitions and concepts associated with the LDSAR framework. In Section 3
we present some logical properties that hold in LDSAR, and show how different
alternative argument-based formalisms can be seen as particular instances of
the proposed framework. Then in Section 4 we discuss some particular issues
relating LDSAR to modeling scientific reasoning, such as comparing top-down
vs. bottom-up computation of warrant, and the combination of qualitative and
quantitative reasoning by incorporating numerical attributes. Finally Section 5
summarizes related work as well as the main conclusions that have been obtained.

2 The LDSAR framework: fundamentals1

2.1 Knowledge representation

We will first introduce a knowledge representation language L
KR

together with
a labeling language L

Labels
. These languages will be used to define the object

language L
Arg

. Following [Gab96], labeled wffs in L
Arg

will be called declarative
units, having the form Label:wff.

Definition 1 (Language L
KR

. Wffs in L
KR

). The language L
KR

will be com-
posed of propositional atoms (a, b, . . . ) and the logical connectives ∧, ∼ and ←.
If α is an atom in L

KR
, then α and ∼α are wffs called literals in L

KR
. If α1,

. . .αk, β are literals in L
KR

, then β ← α1 , . . . αk is a wff in L
KR

called rule.

The language L
KR

is a Horn-like propositional language restricted to rules and
facts.2 Labels in the language L

Labels
can be either basic or complex. Basic labels

distinguish between defeasible and non-defeasible information, whereas complex
labels account for arguments (a tentative proof involving defeasible information)
and dialectical trees (a tree-like structure rooted in a given argument).
1 For space reasons we only give a summary of the main elements of the

LDSAR framework; for an in-depth treatment see [Che01,CS01]). We also
assume that the reader has a basic knowledge about defeasible argumentation
formalisms [CML00,PV99].

2 The language LKR is similar to the language of extended logic programming in a
propositional setting.



Definition 2 (Labeling language L
Labels

). The labeling language L
Labels

is a set
of labels { L1, L2, . . .Lk, . . . }, such that every label L ∈ L

Labels
is:

1. The empty set ∅. This is a basic label is associated with every wff which
corresponds to non-defeasible knowledge.

2. A single wff f in L
KR

. This is a basic label which corresponds to f as a piece
of defeasible knowledge.

3. A set Φ ⊆ Wffs(L
KR

). This is a complex label called argument label.
4. A tree-like structure T is a complex label called dialectical label, being defined

as follows:
(a) If Φ is an argument label, then TU (Φ), TD(Φ) and T∗(Φ) are dialectical

labels in L
Labels

. For the sake of simplicity, we will write Tk to denote an
arbitrary dialectical label.

(b) If T1, . . . , Tk are dialectical labels, then TU
n (T1, . . . ,Tk), T∗n(T1, . . . ,Tk)

and TD
m(T1, . . . ,Tk) will also be dialectical labels in L

Labels
.

5. Nothing else is a label in L
Labels

.

The object (labeled) language in LDSAR is defined as L
Arg

= (L
Labels

,L
KR

).
Since L

KR
is a Horn-like logic language, we will assume an underlying inference

mechanism `
SLD

equivalent to Sld resolution [Llo87], properly extended to han-
dle a negated literal ∼p as a new constant name no p. Given P ⊆ Wffs(L

KR
), we

write P`SLDα to denote that α follows from P via `SLD .

Definition 3 (Contradictory set of wffs in L
KR

). Given a set S of wffs in
L

KR
, S will be called a contradictory set (denoted S `

SLD
⊥) iff complementary

literals p and ∼p can be derived from S via `SLD .

Basic declarative units will be used to encode defeasible and non-defeasible
information available for an intelligent agent to reason from a set Γ of labeled
wffs. Such a set will be called argumentative theory. Formally:

Definition 4 (Basic declarative units. Argumentative theory). A labeled
wff ψ:α such that α is a basic label (either (1) ψ = ∅ or (2) ψ = α) will be called
a basic declarative unit (bdu). In case (1), the wff ∅:α will be called a non-
defeasible bdu; in case (2), the wff α:α will be called a defeasible bdu. A finite
set Γ = { γ1, γ2, . . . , γk} of bdu’s will be called an argumentative theory.
For every argumentative theory Γ we will assume that the set of non-defeasible
formulas Π(Γ ) = {∅:α | ∅:α ∈ Γ} is non-contradictory.

Formulas with an empty label correspond to ‘strict’ knowledge. Thus, ∅:p and
∅:p ← q stand for a fact p and a logic programming clause p ← q . Defeasible
facts (also known as presumptions) and defeasible rules are represented by formu-
las {p}]:p and {p ← q}:p ← q . Thus, the classical default “Birds typically fly”
will be represented in LDSAR as {fly ← bird}:fly ← bird , whereas the strict
rule “Penguins don’t fly” will be represented in LDSAR as ∅:∼fly ← penguin.
Intuitively, the label of a bdu stands for an initial set of support associated with
a formula in the argumentative theory, and is used for consistency check when
performing inferences, as discussed later in Sec. 2.2.



∅:∼fuel ok ← pump clog
∅:sw1 ←
∅:sw2 ←
∅:sw3 ←
∅:heat ←
{pump fuel ok ← sw1}:pump fuel ok ← sw1
{fuel ok ← pump fuel ok}:fuel ok ← pump fuel ok
{pump oil ok ← sw2}:pump oil ok ← sw2
{oil ok ← pump oil ok}:oil ok ← pump oil ok
{engine ok ← fuel ok , oil ok}:engine ok ← fuel ok , oil ok
{∼engine ok ← fuel ok , oil ok , heat}:∼engine ok ← fuel ok , oil ok , heat
{∼oil ok ← heat}:∼oil ok ← heat
{pump clog ← pump fuel ok , low speed}:pump clog ← pump fuel ok , low speed
{low speed ← sw2}:low speed ← sw2
{∼low speed ← sw2 , sw3}:∼low speed ← sw2 , sw3
{fuel ok ← sw3}:fuel ok ← sw3

Fig. 1. Argumentative theory Γengine (example 1)

Example 1. Consider an agent involved in controlling an engine with three switches
sw1, sw2 and sw3. These switches regulate different features of the engine, such
as pumping system, speed, etc. Suppose we have defeasible information about
how this engine works.

– If the pump is clogged, then the engine gets no fuel.
– When sw1 is on, normally fuel is pumped properly.
– When fuel is pumped properly, fuel usually works ok.
– When sw2 is on, usually oil is pumped.
– When oil is pumped, usually it works ok.
– When there is oil and fuel, usually the engine works ok.
– When there is fuel, oil, and heat, then the engine is usually not ok.
– When there is heat, normally there are oil problems.
– When fuel is pumped and speed is low, there are reasons to believe that the

pump is clogged.
– When sw2 is on, usually speed is low.
– When sw3 is on, usually fuel is ok.

Suppose we know sw1, sw2 and sw3 are on, and there is heat. This situation
can be modeled by the argumentative theory Γengine shown in figure 1. 2

2.2 Argument construction

Given an argumentative theory Γ , and a wff p ∈ L
KR

, the inference process in
LDSAR involves first obtaining a tentative proof (or argument) for p. A con-
sequence relation |∼

Arg
propagates labels, implementing the SLD resolution pro-

cedure along with a consistency check every time new defeasible information is



1. Intro-NR: ∅:α for any ∅:α

2. Intro-RE:
Π(Γ ) ∪ Φ /̀SLD⊥

Φ:α
for any Φ:α

3. Intro-∧:
Φ1:α1 Φ2:α2 . . . Φk:αk Π(Γ ) ∪ ⋃

i=1...k
Φi/̀SLD⊥⋃

i=1...k
Φi:α1, α2, . . . , αk

4. Elim-←:
Φ1:β←α1, . . . , αk Φ2:α1, . . . , αk Π(Γ ) ∪ Φ1 ∪ Φ2/̀SLD⊥

Φ1 ∪ Φ2:β

Fig. 2. Inference rules for |∼
Arg

: deriving (generalized) arguments in LDSAR

introduced in a proof. Figure 2 summarizes the natural deduction rules which
characterize the inference relationship |∼

Arg
. Rules Intro-NR and Intro-RE allow

the introduction of non-defeasible and defeasible information in a proof, respec-
tively. Rules Intro-∧ and Elim-← stand for introducing conjunction and applying
modus ponens. In the last three rules, a consistency check is performed in order
to ensure that the label A together with Π(Γ ) does not derive complementary
literals, avoiding logical contradiction. Note that the label A associated with
a formula A:h contains all defeasible information needed to conclude h from
Γ . Thus, arguments in LDSAR are modeled as labeled formulas A:h, where A
stands for a set of (ground) defeasible rules that along with Π(Γ ) derive h.

Definition 5 (Argument. Subargument). Let Γ be an argumentative the-
ory, and let h be a literal such that Γ |∼

Arg
A:h Then A will be called a generalized

argument for h. If it is not the case that Γ |∼
Arg
B:h, with B ⊂ A, then A:h is called

a minimal argument or just argument. If Γ |∼
Arg
A:h, and A:h is an argument,

we will also say that A:h is an argument based on Γ
An argument A:h is a subargument of another argument B:q if A ⊂ B.

Example 2. Consider the argumentative theory Γengine from example 1. Then
the argumentA:engine ok, withA = {(pump fuel ok ← sw1 ), (pump oil ok ←
sw2 ), (fuel ok ← pump fuel ok), (oil ok ← pump oil ok), (engine ok ←
fuel ok , oil ok)} can be inferred via |∼

Arg
by applying the inference rules Intro-NR

twice (inferring sw1 and sw2), then Intro-RE twice (inferring pump fuel ok ←
sw1 and pump oil ok ← sw2 ), then Intro-RE twice again to infer fuel ok ←
pump fuel ok and oil ok ← pump oil ok , and finally Intro-RE once again to in-
fer engine ok ← fuel ok , oil ok . Similarly, arguments B:∼fuel ok, C:∼low speed,
D:fuel ok and E :∼engine ok can be derived via |∼

Arg
, with

A = { (pump fuel ok ← sw1 ), (pump oil ok ← sw2 ), (fuel ok ←
pump fuel ok), (oil ok ← pump oil ok), (engine ok ←
fuel ok , oil ok) }

B = { (pump fuel ok ← sw1 ), (low speed ← sw2 ), (pump clog ←
pump fuel ok , low speed) }



1. Intro-1D:
A:h Minimal(A:h)

T∗(A):h

2. Intro-ND:

T∗(A):h T∗1(B1, . . .):q1 T∗k(Bk, . . .):qk VSTree(A, T∗i ), i = 1 . . . k

T∗(A,T∗1, . . . ,T
∗
k):h

3. Mark-Atom:
T∗(A):h

[TU (A)]:h

4. Mark-1D: for some T∗i , i = 1 . . . k

[T∗(A,T∗1, . . . ,T
∗
i , . . . ,Tk)]:h [TU

i (Bi . . .)]:qi VSTree(A,TU
i )

[TD(A,T∗1, . . . ,T
∗
i−1,T

U
i ,T∗i+1, . . . ,T

∗
k)]:h

5. Mark-ND: For all T∗i , i = 1 . . . k

[T∗(A,T∗1, . . . ,T
∗
i , . . . ,T∗k)]:h [TD

i (Bi, . . .)]:qi VSTree(A,TD
i )

[TU (A,TD
1 , . . . ,TD

i , . . . ,TD
k )]:h

Fig. 3. Rules for building dialectical trees in LDS∗AR

C = { (∼low speed ← sw2 , sw3 ) }
D = { (∼low speed ← sw2 , sw3 ) }
E = { (pump fuel ok ← sw1 ), (pump oil ok ← sw2 ), (fuel ok ←

pump fuel ok), (oil ok ← pump oil ok), (∼engine ok ←
fuel ok , oil ok , heat) }

2

2.3 Defeat among Arguments. Warrant

Given an argument A:h based on an argumentative theory Γ , there may exist
other conflicting arguments based on Γ that defeat it. Conflict among arguments
is captured by the notion of contradiction (def. 3).

Definition 6 (Counterargument). Let Γ be an argumentative theory, and
let A:h and B:q be arguments based on Γ . Then A:h counter-argues B:q if there
exists a subargument B′:s of B:q such that Π(Γ ) ∪ {h, s} is contradictory. The
argument B′:s will be called disagreement subargument.

Defeat among arguments involves a partial order which establishes a prefer-
ence criterion on conflicting arguments. A common preference criterion is speci-
ficity [SL92,SGCS03], which favors an argument with greater information content
and/or less use of defeasible rules.



Definition 7 (Preference order ¹). Let Γ be an argumentative theory, and
let Args(Γ ) be the set of arguments that can be obtained from Γ . A preference
order ¹ ⊆ Args(Γ )× Args(Γ ) is any partial order on Args(Γ ).

Definition 8 (Defeat). Let Γ be an argumentative theory, such that Γ |∼
Arg
A:h

and Γ |∼
Arg
B:q. We will say that A:h defeats B:q (or equivalently A:h is a de-

feater for B:q) if

1. A:h counterargues B:q, with disagreement subargument B′:q′.
2. Either it holds that A:h Â B′:q′, or A:h and B′:q′ are unrelated by the

preference order “¹”.

Example 3. Consider the argumentative theory from example 1. Note that the
arguments B:∼fuel ok, and E :∼engine ok, are counter-arguments for the origi-
nal argument A:engine ok, whereas C:∼low speed and D:fuel ok are counter-
arguments for B:∼fuel ok. In each of these cases, counter-arguments are also
defeaters according to the specificity preference criterion [SL92].

Since defeaters are arguments, there may exist defeaters for the defeaters
and so on. That prompts for a complete dialectical analysis to determine which
arguments are ultimately defeated.

Definition 9 (Dialectical Tree). Let A be an argument for q. The dialectical
tree for A:q, denoted TA:q, is recursively defined as follows:

1. A single node labeled with an argument A:q with no defeaters is by itself the
dialectical tree for A:q.

2. Let A1:q1,A2:q2, . . . ,An:qn be all the defeaters for A:q. We construct the
dialectical tree for A:q, TA:q, by labeling the root node with A:q and by
making this node the parent node of the roots of the dialectical trees for
A1:q1,A2:q2, . . . ,An:qn.

Note: in order to avoid fallacious argumentation [SCG94], some additional con-
straints not given in Def. 9 are imposed on every path (e.g. there can be no
repeated arguments, as this would lead to circular argumentation).3

A dialectical tree resembles a dialogue tree between two parties, proponent
and opponent. Branches of the tree correspond to exchange of arguments between
these two parties. A dialectical tree can be marked as an and-or tree [Gin93]
according to the following procedure: nodes with no defeaters (leaves) are marked
as U -nodes (undefeated nodes). Inner nodes are marked as D-nodes (defeated
nodes) iff they have at least one U -node as a child, and as U -nodes iff they have
every child marked as D-node. Formally:

Definition 10 (Marking of the Dialectical Tree). Let A:q be an argument
and TA:q its dialectical tree, then:
3 An in-depth analysis is outside the scope of this paper. See [CML00,SCG94] for

details.



1. All the leaves in TA:q are labeled as U -nodes.
2. Let B:h be an inner node of TA:q. Then B:h will be a U -node iff every child

of B:h is a D-node. The node B:h will be a D-node iff it has at least one
child marked as U -node.

After performing the above dialectical analysis, an argument A which turns
to be ultimately undefeated is called a warrant. Formally:

Definition 11 (Warrant). Let A:q be an argument and TA:q its associated
dialectical tree, such that its root node A:q is marked as U . Then A:q is called
a warranted argument or just warrant

In the context of LDSAR, the construction and marking of dialectical trees
is captured in terms of dialectical labels (Def. 2). Special marks (*, U , D) are
associated with the a label T(A, . . .) in order to determine whether A corre-
spond to an unmarked, defeated or undefeated argument, resp. In the theory of
defeasible argumentation, a warranted argument or belief will be that one which
is ultimately accepted at some time of the dialectical process. In LDSAR the
concept of warrant can be formalized as follows:

Definition 12 (Warrant – Version 1). Let Cnk
∗(Γ ) be the set of all dialectical

formulas that can be obtained from Γ via |∼T by at most k applications of inference
rules (i <= k). A literal h is said to be warranted iff TU (A, ...):h ∈ Cnk

∗(Γ ),
and there is no k′ > k, such that TD(A, ...):h ∈ (Cnk′

∗ (Γ ) \ Cnk
∗(Γ )).

This approach resembles Pollock’s original ideas of (ultimately) justified be-
lief [Pol95]. Note that Def. 12 forces to compute the closure under |∼T in order to
determine whether a literal is warranted or not. Fortunately this is not the case,
since warrant can be captured in terms of a precedence relation “< ” between
dialectical labels. Informally, we will write T < T’ whenever T reflects a state
in a dialogue which is previous to T’ (in other words, T’ stands for a dialogue
which evolves from T by incorporating new arguments). A final label is a label
that cannot be further extended.

Definition 13 (Warrant – Version 2). 4 Let Γ be an argumentative theory,
such that Γ |∼T TU

i (A, . . .):h and TU
i is a final label (i.e., it is not the case that

Γ |∼T TD
j (A, . . .):h and TU

i < TD
j ). Then TU

i (A, . . .):h is a warrant. We will
also say that h is a warranted literal, or that A:h is a warrant in Γ .

In LDSAR, the construction of dialectical trees is formalized in terms of an
inference relationship |∼T . Figure 3 summarizes the rules needed for formalizing
the above dialectical analysis. Rule Intro-1D allows to generate a tree with a
single argument (i.e., a generalized argument which is minimal). Rule Intro-ND
allows to expand a given tree T∗ by introducing new subtrees T∗1(B1, . . .):q1

T∗k(Bk, . . .):qk. A special condition VSTree(A, T∗i ) , i = 1 . . . k checks that such
subtrees are valid (i.e. the root of every T∗i is a defeater for the root of T∗,
4 It can be proven that Def. 13 and 12 are equivalent [Che01].



and no fallacious argumentation is present). Rules Mark-Atom, Mark-1D and
Mark-ND allow to ‘mark’ the nodes (arguments) in a dialectical tree as defeated
or undefeated. The tree is marked as an and-or tree. Nodes with no defeaters
are marked as U -nodes (undefeated nodes). Inner nodes are marked as D-nodes
(defeated nodes) iff they have at least one U -node as a child, and as U -nodes iff
they have every child marked as D-node.

Example 4. Consider the argumentative theory from example 1 and the argu-
ments and defeat relations from examples 2 and 3. From the argumentative
theory Γengine the following formulas can be inferred via |∼T :

Γ |∼T T∗1(A):engine ok via Intro-1D (1)
Γ |∼T T∗2(B):∼fuel ok via Intro-1D (2)
Γ |∼T T∗3(C):∼low speed via Intro-1D (3)
Γ |∼T T∗4(D):fuel ok via Intro-1D (4)
Γ |∼T T∗5(E):∼engine ok via Intro-1D (5)
Γ |∼T T∗2(B,T∗3(C),T∗4(D)):∼fuel ok via Intro-ND, (3) and (4) (6)
Γ |∼T T∗1(A,T∗2(B,T∗3(C),T∗4(D)),T∗5(E)):engine ok via Intro-ND and (6) (7)
Γ |∼T TU

5 (E):∼engine ok via Mark-Atom (8)
Γ |∼T TD

1 (A,T∗2(B,T∗3(C),T∗4(D)),TU
5 (E)):engine ok via Mark-1D and (8) (9)

Note that the formula obtained in step (7) has a final label associated with
it, since it cannot be ‘expanded’ from previous formulas. Hence, following defi-
nition 13, we can conclude that engine ok is not warranted.

3 LDSAR: Some relevant logical properties

LDSAR provides a useful formal framework for studying logical properties of
argument-based systems in terms of inference relationships.5 Three particular
consequence operators can be identified:

– Thsld(Γ ), = {∅:h | Γ |∼
Arg
∅:h}, which denotes the set of non-defeasible con-

clusions that follow from Γ by using only strict rules.
– Carg = {A:α | Γ |∼

Arg
A:α, where α is a literal in L

KR
}, which denotes the set

of all arguments that follow from Γ ;
– Cwar = {∅:h | there exists a warranted argument A:h based on Γ }, which

denotes the set of all warranted conclusions that follow from Γ ;

Cummulativity was proven to hold for argumentative formulae. This allows
to think of an argumentative theory as a knowledge base containing ‘atomic’ ar-
guments (facts and rules), which can be later on extended by incorporating new,
more complex arguments. Cummulativity is proven not to hold for warranted
conclusions, following the intuitions suggested by Prakken & Vreeswijk [PV99].
5 See [Ant96] for an excellent survey on the role of inference relationships and their

properties in nonmonotonic logics.
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B:∼fuel ok
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E :∼engine ok
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C:∼low speed
(U)

D:fuel ok
(U)

A:engine ok
(D)

E :∼engine ok
(U)

Fig. 4. Dialectical tree TA:engine ok and associated pruned tree Pruned(TA:engine ok)

Lemma 1 (Cummulativity for Arguments). 6 Let Γ be an argumentative
theory, and let α1 and α2 be wffs in L

KR
. Then Γ |∼

Arg
A1:α1 implies that Γ ∪

{A1:α1} |∼Arg
A2:α2 iff Γ |∼

Arg
A2:α2

A special variant of superclassicality was shown to hold for both argument
construction and warrant wrt SLD resolution: if Thsld(Γ ) denotes the set of
conclusions that can be obtained from Γ via SLD, then it holds that Carg (Γ ) ⊆
Thsld(Γ ) and Cwar (Γ ) ⊆ Thsld(Γ ), where Carg and Cwar stand for the con-
sequence operator for argument construction and warrant, respectively. This
implies, among other things, that the analysis of attack between arguments can
be focused on literals in defeasible rules. Formally:

Lemma 2 (Horn supraclassicality for Carg and Cwar). Operators Carg (Γ )
and Cwar satisfy Horn supraclassicality wrt Th

sld
, i.e. Th

sld
(Γ ) ⊆ Carg (Γ ) and

Th
sld

(Γ ) ⊆ Cwar (Γ ).

Analogously, a variant of right weakening is proven to hold for both Carg and
Cwar . This implies that (warranted) arguments with a conclusion x account also
as (warranted) arguments for y whenever y ← x is present as a non-defeasible
rule. A full analysis of the logical properties of LDSAR is outside the scope of
this paper; for an in-depth treatment the reader is referred to [CS01].

4 LDSAR: theoretical considerations and applications

4.1 Computing Warrant: Bottom-up vs. Top-down

As described in Section 2.3, the notion of dialectical tree allows to capture the
computation of warranted arguments. This notion is relevant in the context
6 Proofs of propositions and theorems are not included for space reasons. For details

the interested reader is referred to [Che01,CS01,CS02].



of defeasible argumentation in particular, and with respect to scientific rea-
soning in general. In most implementations of defeasible argumentation (e.g.
DeLP [GS03]), computation of warrant is performed in a top-down fashion, based
on a depth-first construction of a dialectical tree. As a marked dialectical tree
is an AND-OR tree, an additional α-β pruning can be performed as the tree is
built, resulting in a smaller tree, pruned tree.

Example 5. Consider the dialectical label rooted in A:engine ok associated with
the final dialectical label in example 4. This label can be depicted as a dialectical
tree as shown in figure 4 (left). The root node of TA:engine ok is labeled as D-
node. Note that it is not necessary to compute the whole tree to mark the root
node as D. In fact, considering the pruned tree Pruned(TA:engine ok) shown
in figure 4 (right), an equivalent answer would have been obtained. Note that
Pruned(TA:engine ok) was obtained from TA:engine ok by applying α-β pruning.

The LDS approach provides a bottom-up construction procedure, as complex
labels are built on the basis of more simple ones. It can be proven that warrant
can be computed by either of these approaches. In particular, such equivalence
result shows that pruning aspects in the top-down approach (commonly used
in implemented argument-based systems as [GS03]) correspond to performing a
particular selection of inference rules in the bottom-up approach.

Theorem 1. Given an argumentative theory Γ , the following three cases are
equivalent: 1) The root of TA:q is marked as U -node; 2) The root of Pruned(TA:q),
is marked as U -node; 3) It is the case that Γ |∼TA:hU .

4.2 Variants of LDSAR

Another interesting issue concerns the definition of variants for LDSAR. Since
LDSAR is a logical framework, its knowledge-encoding capabilities are deter-
mined by the underlying logical language, whereas the inference power is charac-
terized by its deduction rules. Adopting a different knowledge representation lan-
guage or modifying some particular inference rules would lead to different vari-
ants of LDSAR, resulting in a family of argumentative systems. Figure 5 summa-
rizes some of these variants of LDSAR and their relationship to to some existing
argumentation frameworks, such as Simari-Loui’s [SL92], MTDR (an extension
of the original Simari-Loui approach), Defeasible Logic Programming [GS03] and
NLP (normal logic programming), conceptualized in an argumentative setting
as suggested in [KT99]. Every variant of LDSAR is denoted as ASx (standing
for Argumentative System). Thus, for instance, adopting a restricted first-order
language as the knowledge representation language L

KR
leads to AS

SL
, a particu-

lar instance of LDSAR with a behavior similar to the argumentative framework
proposed in [SL92]. Similarly, restricting the language L

KR
in LDSAR to normal

clauses [Llo87] and incorporating an additional inference rule to handle default
negation will result in a particular argumentative system AS

NLP
, a formulation

similar to normal logic programming (NLP) under well-founded semantics as



discussed in [KT99].7 Two distinguished variants of LDSAR deserved particu-
lar attention, as they allowed to model two particular cases of defeasible logic
programming [GS03], namely DeLPnot and DeLPneg (DeLP restricted to de-
fault and strict negation, resp.). Such special cases of DeLP could be better
understood and compared in the context of extensions based on LDSAR.

ASSL

6
ASMTDR

6
ASLP

¢
¢¢̧

A
AAK

ASnot

6
ASNLP

ASneg

SL

6
MTDR

6
DeLP

¢
¢¢̧

A
AAK

DeLPnot
6

NLP

DeLPneg

Fig. 5. A taxonomy relating the expressive power of LDSAR and different argumenta-
tion systems

4.3 Extending LDSAR to incorporate numerical attributes

The growing success of argumentation-based approaches has caused a rich cross-
breeding with other disciplines, providing interesting results in different areas
such as legal reasoning, medical diagnosis and decision support systems. Many of
these approaches rely on quantitative aspects (such as numeric attributes, proba-
bilities or certainty values). As argumentation provides mostly a non-numerical,
qualitative setting for commonsense reasoning, integrating both quantitative and
qualitative features has shown to be highly desirable.

LDSAR can be naturally extended to incorporate such quantitative features,
e.g. by adding some certainty factor cf such that cf(f) = 1 whenever f corre-
sponds to non-defeasible knowledge, and 0 < cf(f) < 1 whenever f stands for
defeasible knowledge. A formula of the form [α, cf(α)]:α in the knowledge base Γ
would therefore stand for “α is a defeasible formula which has the certainty fac-
tor cf(α)”.Similarly, the formula [∅, 1]:α would stand for “α is a non-defeasible
formula”. Finally, performing an inference from Γ (i.e., building a generalized
argument) would result in inferring a formula [Φ, cf(Φ)]:α, standing for “The set
Φ provides an argument for α with a certainty factor cf(Φ)”.

In [CS02] this approach was first explored, and an extension of the LDSAR

framework was defined in order to incorporate numerical attributes. In this ex-
tended framework, deduction rules propagate certainty factors as inferences are
7 A full discussion of different argumentative frameworks encompassed by LDSAR can

be found in [Che01].



carried out both in arguments and dialectical trees.8 It must be remarked that
the combination of qualitative and quantitative reasoning has recently motivated
the development of general encompassing frameworks, such as the one proposed
in [ADP03], which allows to deal with default, paraconsistency and uncertainty
reasoning, and is general enough to capture Possibilistic Logic Programs and
Fuzzy Logic Programming, among others.

5 Conclusions

As we have outlined in this paper, Labelled Deductive Systems offer a pow-
erful tool for formalizing different aspects of defeasible argumentation. Many
argument-based formalisms exist (e.g. [GS03,PS97,Vre93]), relying on a num-
ber of shared notions such as the definition of argument, defeat and warrant.
Such formalisms provided the motivation for the definition of LDSAR, in which
the above notions could be abstracted away by specifying a suitable underlying
logical language and appropriate inference rules.

LDSAR provides a formal framework for argumentative reasoning which can
be adapted for different purposes. As we have detailed in section 3, LDSAR makes
it easier to analyze, compare and relate alternative argumentative frameworks.
Relevant logical properties of argumentation can also be studied and analyzed
in a formal setting. Arguments in conflict can be compared and weighed wrt to
qualitative features (e.g. specificity) or quantitative ones (e.g. certainty factors).
Aggregated preference criteria can be defined to properly combine these such
preference orderings. The same analysis applies to the construction of dialectical
trees. Alternative approaches can extend the original labeling criterion, as in
the case of considering accrual of arguments [Vre93,Ver96] when assessing a new
certainty factor for the root of a dialectical tree.

In summary, we contend that a general encompassing framework as LDSAR

provides an integrated test-bed for studying different issues and open problems
related to computational models of defeasible argumentation (such as argumen-
tation protocols, models of negotiation, resource-bounded reasoning, etc.). Re-
search in this direction is currently being pursued.

Acknowledgments: The authors want to thank one of the anonymous reviewers
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