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Abstract

An argumentative system constitutes a formalization of the process
of defeasible reasoning. An argument is a tentative piece of reasoning
that an agent would be inclined to accept, all things considered, as
an explanation for a certain hypothesis. If new information becomes
available, arguments may lose support or become weakened, and no
longer be regarded as valid.

In [11, 3] an argument-based reasoning system was introduced.
One of the most signi¯cant aspects of this system consists in its con-
ceptual simplicity with respect to other alternative frameworks. As a
result, the inference mechanism is natural to understand, and imple-

mentation issues can be solved in a rather straightforward way.
Nevertheless, the acceptance of an argument as a valid inference

involves a justi¯cation procedure, which turns out to be computa-
tionally expensive, since arguments are generated by unguided search.
This represents both a simpli¯ed model of the argumentation process
and higher demands on computational resources.

This paper presents some ideas about how to focus the inference
process on those arguments which turn out to be decisive for the ¯nal
outcome of the justi¯cation process. Preference criteria are intro-
duced, based on the need of preserving consistency along the genera-
tion of the arguments involved.
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1 Introduction and motivations

An argumentative system [11, 6, 5, 12] constitutes a formalization of the
process of defeasible reasoning. An argument A for a hypothesis h is a
tentative piece of reasoning an agent would be inclined to accept, all things
considered, as an explanation for h. If the agent gets new information, that
argument may lose support or become weakened, so that A may no longer
be regarded as valid. In that manner nonmonotonicity arises.

In A Mathematical Treatment of Defeasible Reasoning [11], or MTDR,
a clear and theoretically sound structure for de¯ning an argument-based
reasoning system was introduced. Further developments in this direction
were recently presented in [3]. One of the most signi¯cant aspects of the
MTDR framework consists in its conceptual simplicity with respect to other
alternative formalisms. As a result, the inference mechanism is natural and
easy to understand, and implementation issues can be solved in a rather
straightforward way.

Nevertheless, even though arguments are relatively easy to construct us-
ing backward chaining (they are just a special kind of proof trees), their
acceptance as valid defeasible inferences involve a justi¯cation procedure,
which turns out to be computationally expensive. In order to improve the
perfomance of this procedure, some extensions have been proposed [5], which
involve the use of an arguments base, to keep account of those arguments al-
ready generated by the system.

However, the intrinsic complexity of the speci¯city checking used for de-
ciding between con°icting arguments, as well as the need of an exhaustive
analysis of the search space associated with a justi¯cation are important
aspects, which deserve also a special treatment. In order to obtain a justi-
¯cation, the existing implementations of the framework generate arguments
through a trial-and-error search. This is clearly not the way we humans per-
form argumentation in the course of a debate, since we usually try to keep
arguments \to the point", in order to support (or refute) a particular fact.
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On the other hand, it is clear that in this case unguided search represents
not only a simpli¯ed model of the argumentation process, but also higher de-
mands on computational resources. This becomes even worse if we consider
that speci¯city checking as a criterion for preferring one argument from an-
other is quite expensive, and it must be carried out every time two con°icting
arguments (argument and counterargument) are generated.

This paper presents some ideas about how to face the problems described
above. First, we will show that the dialectical tree associated with a justi¯-
cation can be characterized as a kind of and-or search tree. This will help
to understand why an ordering in argument generation plays a meaningful
role in the perfomance of the system. Then, we will introduce a selection cri-
terion for generating arguments as the justi¯cation process is being carried
out. This selection criterion is based on a dynamical stratī cation of de-
feasible rules, which originates on the need of preserving consistency within
argumentation lines in the debate.

2 Defeasible Argumentation

We will brie°y introduce the main concepts of our framework for defeasible
argumentation [11, 3] (see the appendix for de¯nitions and further details).
The knowledge of an intelligent agent A will be represented using a ¯rst-
order language L, plus a binary meta-linguistic relation \>¡¡" between sets
of non-ground literals of L which share variables. The members of this
meta-linguistic relation will be called defeasible rules, and they have the form
\® >¡¡ ¯ ". The relation \>¡¡" is understood as expressing that \reasons to
believe in the antecedent ® provide reasons to believe in the consequent ¯".

The beliefs of A are represented by a pair (K;¢), called Defeasible Logic
Structure, where ¢ is a ¯nite set of defeasible rules. K represents the non-
defeasible part of A's knowledge and ¢ represents information that A is
prepared to take at less than face value. ¢

#
denotes the set of all ground

instances of members of ¢.
An argument A for a conclusion h (see de¯nition 6.4) is a set of ground

defeasible rules, that together with K allow us to infer h. An argument
constitutes a defeasible support for a conclusion h, since there may exist
better counterarguments which defeat A, so that h may no longer be regarded
as valid.
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We will accept an argument A as a defeasible reason for a conclusion h if
A is a justi¯cation for h. The justi¯cation process involves the construction
of an acceptable argument for h. To decide the acceptability of an argument
A for a literal h, its associated counterarguments (see de¯nition 6.6) B1, B2,
. . .Bk will be obtained, each of them being a (defeasible) reason for rejecting
A. If some Bi is supported on \better" (or unrelated) evidence than A, then
Bi will be a candidate for defeating A (see de¯nition 6.8). Speci¯city is the
preference criterion for deciding between two con°icting arguments. When
speci¯city cannot decide, a blocking situation occurs.

Since counterarguments are also arguments, the former analysis should
be in turn carried out on them. Now, Bi will defeat A unless there exists an
argument Cj (which corresponds to one of the counterarguments C1,C2,. . .Cr
associated to Bi) that defeats Bi. In that case, we will be forced to reject Bi,
and hence our original argument A would be reinstated. If it turns out that
there is a defeater Dk among the counterarguments of Cj, then Bi would be
reinstated as defeater for A. Thus, the acceptance of an argument A will
result from a recursive procedure, in which arguments, counterarguments,
counter-counterarguments, and so on, should be taken into account. The
above description leads in a natural way to the use of trees to organize that
dialectical analysis.

In order to accept an argument A for a conclusion h, a dialectical tree can
be generated (see de¯nition 6.9). Every inner node in this tree will represent
a defeater (proper or blocking), and the root of the tree will correspond to
the original argument A. Nodes in this tree can in turn be recursively labeled
as defeated (D-node) or undefeated nodes (U-node). If all children nodes of
the root turn out to be labeled as defeated, we say that A is an acceptable
argument. The procedure just described closely resembles a logical discussion
or argumentation, i:e:, it is a dialectical process. This characterization leads
us to a labeling procedure, after which we can conclude whether the root of
the dialectical tree corresponds indeed to an acceptable argument.

Besides, as arguments are labeled as U -nodes or D-nodes within a dialec-
tical tree, they are stored in an arguments base [5]. In that way, arguments
appearing several times in the same dialectical tree are generated and labeled
just once. Additional occurences of those arguments and their associated la-
bels can be retrieved from the arguments base, without having to construct
them again.
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3 Speeding up inference

As we have shown in [3], the number of nodes (arguments) in a dialectical
tree is ¯nite. Nevertheless, this number could be large enough for making
exhaustive search impossible within reasonable time constraints. In this sec-
tion, we will introduce a pruning strategy which allows us to reduce the
search space associated with the dialectical argumentation process.

According to the de¯nition 6.10 (see appendix), nodes (arguments) in a
dialectical tree can be recursively label as U-nodes (undefeated arguments)
or D-nodes (defeated arguments). In order to label a node as \undefeated",
all his child nodes (defeaters) must be defeated. Similarly, a node can be
labeled as \defeated" if it has at least one undefeated child node (defeater).
That way, as far as the labeling procedure is concerned, a dialectical tree is
a kind of and-or tree: U-nodes correspond to and-nodes, and D-nodes to
or-nodes.

This feature allows us to carry out a pruning strategy on a dialectical tree
(similar to ®-¯ pruning [4]). Thus, in order to determine if a given argument
is or not a justi¯cation, it will not be necessary to perform an exhaustive
analysis involving every argument in the dialectical tree. As a result, the
inference process can be speeded up.

Example 3.1 Consider the following dialectical tree. The arguments marked
with an asterisk had not to be taken into consideration in order to label the
root of the tree as D (defeated).

D
/ | \

/ | \
/ | \
/ | \

/ | \
U * *
/ \ / \ |\

/ \ * * | \
D D * *

/| \ / \
/ | \ / \
U * * * *

2
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The possibility of performing such a pruning on the dialectical tree shows
clearly that the order in which arguments (counterarguments, counter-counterarguments,
etc.) are to be considered plays a meaningful role. Not every argumentation
line1 in the dialectical tree with root A must be tested in order to determine
if the argument A is indeed a justi¯cation.

Since most arguments do not have the same number of counterarguments,
a dialectical tree will be seldom balanced. The depth of the tree will cor-
respond to the longest argumentation line in the tree. According to our
preceding analysis, the evaluation for labeling the arguments on this argu-
mentation line should be delayed as long as possible, since {all things being
equal{ shorter argumentation lines have the same chances of \breaking the
debate", and they can be evaluated faster than longer ones. This fact implies
that the size of the search space associated with the justi¯cation procedure
will be di®erent, depending on the order in which argumentation lines are
going to be generated. Thus, if the ¯rst counterargument taken into consid-
eration turns out to remain undefeated, the size of the search space will be
minimal. The worst case will arise when we need to analize all the search
space.

Assuming that argumentation lines within a dialectical tree were sorted
on their length (this can be done recursively), a sorted dialectical tree would
result, as shown on the left in the ¯gure below.
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An average dialectical tree

1An argumentation line in a dialectical tree is a path from the root to a leaf (see
de¯nition 6.12)
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Given an arbitrary dialectical tree, we analize on the average half of the
tree (assuming depth-¯rst search), and this should be on the average half of
the search space (i:e:, we should consider half of the number of arguments
in that dialectical tree). As we can see from the drawing above, half of the
sorted tree is clearly less than half of the whole search space, so that the
pruning strategy would have its best perfomance if it were carried out on
such a tree.

Thus, in order to prune the search space, it turns out to be particulary
important to have a criterion for preferring the most promising counterargu-
ment ¯rst. The words \most promising" mean here \that one belonging to
the shortest argumentation line". Should this counterargument be defeated,
then the next argumentation line must be again kept as short as possible,
and so on. The longest argumentation line should be delayed as long as pos-
sible, since on the average, it will be the one which involves the most complex
analysis.

However, there are several intuitive reasons which lead us to believe
that such a criterion could not be applied in defeasible argumentation. As
Vreeswijk [12] correctly observes, the only way of actually determining the
strenght of an argument is throwing it into the debate. We cannot know be-
forehand how many counterarguments a particular argument could have. A
counterargument which looks strong enough for defeating a given argument
may have more counter-counterarguments than a weaker counterargument
without counter-counterarguments. In this respect, Vreeswijk ( [12], page
151) observes that:

. . . But would it not be a good idea, for example, to let each party present
its strongest arguments ¯rst? In that way, the discussion is not distracted by
weak arguments that hold up the progress, so that interests are soon heading
towards the right direction. Or, if that idea does not work, then maybe it will
help to forbid each party to play out the less promising arguments ¯rst, again
to ensure that needless detours in the dialectical structure will be avoided.
Unfortunately, both suggestions do not really contribute to a solution of the
problem. The last suggestion is even useless, since there is no other way
of ¯nding out whether an argument is promising or not, then to actually
`throw' it into the discussion. In fact, it begs the whole question of what is
involved in testing the credibility of an argument. So this suggestion does
not help us much further. The ¯rst suggestion, although it is valid, is not
of much use either, since the conclusive force of an argument does not say
much about its e®ectivity in the course of the debate. . . .
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We claim that some criteria can be given, based on some theoretical
considerations, in order to know in advance how promising an argument can
be in the course of a debate. These criteria will be formally stated and
discussed in the next section.

4 Stratifying defeasible rules

What determines when a counterargument is more promising than other for
breaking a debate? This question is not an easy one. Appealing to our
intuition, \good" counterarguments are those which are \di±cult" to refute.
As a ¯rst approach, we can then say that, in general, argumentation lines
will be shorter when every argument involved has as few literals as possible
at which it can be further counterargued. Thus, the branching factor of the
dialectical tree would be minimized.

As already shown in [?], our framework introduces an important con-
straint for constructing argumentation lines: supporting and interferring ar-
guments must be consistent among themselves. Thus, an interferring (sup-
porting) argument that counterargues a supporting (interferring) argument
is related to previous interferring (supporting) arguments within the same
argumentation line.

In other words: once a supporting (interferring) argument A has been
thrown into the debate, any other supporting (interferring) argument in fur-
ther stages of the debate is forced not to contradict those conclusions that
can be inferred from A. Breaking this rule causes supporting (interferring)
arguments to no longer be consistent among themselves.

This leads us to the following claim:

Claim 4.1 Let hA; hi be an argument structure, and let hB; qi be a counter-
argument for hA; hi. On the average, hB; qi will be a `good' counterargument
if A \B is as large as possible. 2

That is to say: a S-argument (I-argument) which uses as much informa-
tion as possible from previous I-arguments (S-arguments) will have, on the
average, better chances of remaining undefeated than ordinary counterargu-
ments obtained randomly from the knowledge base.

Besides, the structural resemblance of argument and counterargument
would help simplify the speci¯city checking, by eliminating the analysis on
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literals supported on the same set of grounded defeasible rules in both the ar-
gument and the counterargument involved. This structural resemblance can
be established without considering the system's KB, from which arguments
have been obtained. Consider the following example.

Example 4.1 Let

A = hfd>¡¡b; e >¡¡c; b ^ c>¡¡ag; ai
B1 = hfd>¡¡b; e >¡¡c; b ^ c ^ r >¡¡:ag;:ai
B2 = hfp>¡¡:ag;:ai
B3 = hfg ^ h>¡¡:ag;:ai

be argument structures. Then B1,B2 and B3 are counterarguments for A.
Why does B1 seems to be a `good' counterargument at ¯rst sight? We

know immediatly that it is more speci¯c than A; we cannot assure anything
about speci¯city for B2 or B3, even though they are structurally simpler
than B1. Were these arguments the only ones for concluding a and :a, we
would also tend to think that B1 defeats A, without pursing the analysis any
further.

Why? If an argument C attacks B1 at an inner literal, this would mean
breaking the rule of keeping supporting argument consistent among them-
selves. Thus, in order to counterargue B1, a counter-counterargument C
must necessarily attack B1's conclusion (i:e:, :a). The same analysis would
apply to an interferring argument D, counterarguing C , with respect to the
defeasible rules used in B1; interferring arguments must be also consistent
among themselves. 2

We will introduce some de¯nitions, in order to formalize our claim. First,
since ground defeasible rules represent material implications within an argu-
ment structure, we have to be able to deal with them as such.

De¯nition 4.1 Let hA; hi be an argument structure. Then A denotes a
set of material implications, where every ground defeasible rule a>¡¡b in A is
replaced by a!b in A.

This de¯nition can be extended to handle a set of argument structures.

De¯nition 4.2 Let S be a set of argument structures f hA1; h1i, hA2; h2i,
. . . ,hAn; hni g. Then S denotes the set A1 [ A2 [ : : : [ An.
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The set of supporting and interferring arguments up to a certain point in
an argumentation line can be characterized as follows.

De¯nition 4.3 Let [A0; A1; A2; : : : ; An] be an argumentation line. Then

S i
¸ = f Ak such that k = 2p, p ¸ 0, k · ig
I i
¸ = f Ak such that k = 2p + 1, p ¸ 0, k · ig

De¯nition 4.4 Let hA; hi be an argument structure. Then Csc(hA; hi)
denotes the set of consequents of ground defeasible rules in A.

De¯nition 4.5 Let S be a set of argument structures f hA1; h1i, hA2; h2i,
. . . ,hAn; hni g. Then Csc(S) =

S fCsc(hA; hi) : 8hA; hi 2 S g.

The efectiveness of our former claim becomes now clear with the following
lemma, whose proof is straightforward form the concepts discussed so far:

Lemma 4.1 Let ¸ = [A0; A1; A2; : : : ; An] be an argumentation line. Then
the set
C = S i

¸ \ I i
¸ constitutes non-defeasible knowledge for the construction of

the arguments [Ai+1; Ai+2; : : : ; An].

When constructing interferring (supporting) arguments, we will prefer
those defeasible rules already used by previous supporting (interferring) ar-
guments in the same argumentation line, since the conclusions of these rules
cannot be counter-counterargued because of the consistency constraints de-
scribed before.

From the previous lemma, it is also clear that

² Ground defeasible rules present in both a supporting and an interferring
argument within the same argumentation line can be thought of as
material implications of the system's knowledge base.

² Literals supported on subarguments in a supporting (interferring) ar-
gument can be thought of as grounded facts of the system's knowledge
base, in order to construct other supporting (interferring) arguments
within the same argumentation line.
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As an argumentation line is being constructed, the sets KP and KG ex-
pand dynamically as we go deeper into the dialectical tree, and shrink as
we discard arguments which turned out to be defeated. The augmented sets
correspond to two di®erent supersets: one containing the ground defeasible
rules belonging to supporting arguments in an argumentation line, and the
other contains those rules that belong to interferring arguments in that ar-
gumentation line. On the other hand, as stated in the lemma above, those
grounded defeasible rules shared by an S-argument and an I-argument in the
same argumentation line can be considered to be nondefeasible knowledge for
further stages of the debate within that argumentation line.

As the debate progresses, the possibility of counterarguing becomes more
di±cult, since the rules used for constructing arguments in the ¯rst stages
impose consistency constraints for the formulation of new arguments, and
conclusions based on defeasible knowledge (accepted by both parties in the
debate) are no longer questionable, being its epistemic status similar to par-
ticular facts.

Then, as ¸ is being constructed, the system's knowledge base would be
expanded as follows (the numbers on the right column correspond to the
current depth of the argumentation line).

KG for S-arguments KG for I-arguments

0 KG KG
1 KG [ S 1

¸ KG [ I 1
¸

2 KG [ S 2
¸ KG [ I 2

¸

3 KG [ S 3
¸ KG [ I 3

¸

...

k KG [ S k
¸ KG [ I k

¸

KP for S-arguments KP for I-arguments

0 KP KP
1 KP [ Csc(S 1

¸ ) KP [ Csc(I 1
¸ )

2 KP [ Csc(S 2
¸ ) KP [ Csc(I 2

¸ )

3 KP [ Csc(S 3
¸ ) KP [ Csc(I 3

¸ )
...

k KP [ Csc(S k
¸ ) KP [ Csc(I k

¸ )
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Augmented KG
0 KG
1 KG [ f S 1

¸ \ I 1
¸ g

2 KG [ f S 2
¸ \ I 2

¸ g
3 KG [ f S 3

¸ \ I 3
¸ g

...
k KP [ f S k

¸ \ I k
¸ g

The preference ordering used for constructing I-arguments (S-arguments)
will be the following:

1. Use KP and KG for S-arguments (I -arguments), if possible; else

2. Use augmented KG; else

3. Use defeasible rules from ¢.

5 Conclusions

The need of preserving consistency within a debate has proven to be an im-
portant issue in argumentative reasoning. In [3], by introducing a dialectics-
based approach, we were able to detect fallacious argumentation. The prob-
lem was solved by introducing some consistency constraints on argumentation
lines.

In this paper, we have discussed the intuitive ideas which led us to
think about inference and its relation to consistency in argumentation lines.
We were able to distinguish the knowledge on which S-arguments and I-
arguments are supported. This consistency-based approach seems to give
us criteria for guiding the debate, in order to ¯nd out if our original argu-
ment is a justi¯cation or not. These criteria allowed us to re¯ne the original,
simpli¯ed model of the process carried out for constructing arguments (ex-
haustive search). As a result, the use of the computational resources needed
for performing argumentation could be improved.

We think that this topic needs further research, in order to incorporate
it into the existing frameworks for argumentative reasoning. A more precise
formalization of the ideas discussed in this paper is being worked on at the
time.
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6 Appendix: a framework for defeasible ar-

gumentation

In this appendix, the main de¯nitions of a defeasible argumentation frame-
work are introduced (see [11] and [3] for further details). The knowledge of
an intelligent agent A will be represented using a ¯rst-order language L, plus
a binary meta-linguistic relation \>¡¡" between sets of non-ground literals of
L which share variables. The members of this meta-linguistic relation will
be called defeasible rules. The defeasible rule \® >¡¡ ¯ " is to be understood
as expressing that \reasons to believe in the antecedent ® provide reasons to
believe in the consequent ¯".

Definition 6.1 Let K be a consistent subset of sentences of the language L,
called the context. This set can be partitioned in two subsets KG, of general
(necessary) knowledge, and KP , of particular (contingent) knowledge.

Definition 6.2 The pair (K;¢), called Defeasible Logic Structure, repre-
sents the beliefs of A. The set K corresponds to the non-defeasible part of
A's knowledge. The set ¢ is a ¯nite set of defeasible rules, representing in-
formation that A is prepared to take at less than face value. ¢

#
will denote

the set of all ground instances of members of ¢.

Definition 6.3 Let ¡ be a subset of K[¢
#
. A ground literal h is a defeasible

consequence of ¡, abbreviated ¡ j» h, if and only if there exists a ¯nite
sequence B1; : : : ; Bn such that Bn = h and for 1 · i < n, either Bi 2 ¡, or Bi

is a direct consequence of the preceding elements in the sequence by virtue of
the application of any inference rule of the ¯rst-order theory associated with
the language L. The ground instances of the defeasible rules are regarded as
material implications for the application of inference rules. We will also write
K [A j» h distinguishing the set A of defeasible rules used in the derivation
from the context K.

Definition 6.4 We say that a subset A of ¢
#

is an argument structure for
h in the context K (denoted by hA; hiK, or just hA; hi) i®: (1) K [ A j» h,
(2) K [ A 6j» ? and (3) 6 9A0 ½ A; K [A0 j» h. A subargument of hA; hi
is an argument hS; ji such that S µ A. Given hA; hiK, we can also say that
A is an argument for h.
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Example 6.1 Given (K;¢), K = fd!b; d; f; lg, ¢ = fb ^ c>¡¡h; f >¡¡c; l ^
f >¡¡:cg, we say that hff >¡¡c; b ^ c>¡¡hg; hi is an argument structure for h.
2

Definition 6.5 Two argument structures hA1; h1i and hA2; h2i disagree,
denoted hA1; h1i ./ hA2; h2i, if and only if K[ fh1; h2g ` ?.

Definition 6.6 We say that hA1; h1i counterargues hA2; h2i at literal h,

denoted hA1; h1i
h­! hA2; h2i i®

1. There exists a subargument hA; hi of hA2; h2i such that hA1; h1i./
hA; hi.

2. For every proper subargument hS; ji of hA1; h1i, it is not the case that
hA2; h2i­! hS; ji.

If hA1; h1i
h­! hA2; h2i, we can also say that hA1; h1i is a counterargument

for hA2; h2i.
Definition 6.7 Let D = fa 2 L : a is a ground literal and K [ ¢

# j» ag,
and let hA1; h1i,hA2; h2i be two argument structures. We say that A1 for h1

is strictly more speci¯c than A2 for h2, denoted hA1; h1i Âspec hA2; h2i, if and
only if
i) 8S µ D if KG[ S [A1j» h1 and KG [ S 6j» h1, then KG [ S [A2j» h2.
ii) 9S µ D such that KG[S[A2j» h2, KG[S 6j» h2 and KG[S[ A1 6j» h1.

Definition 6.8 hA1; h1i defeats hA2; h2i at literal h, denoted hA1; h1i Àdef hA2; h2i,
if and only if there exists a subargument hA; hi of hA2; h2i such that: hA1; h1i
counterargues hA2; h2i at the literal h and
1. hA1; h1i is strictly more speci¯c than hA; hi, or
2. hA1; h1i is unrelated by speci¯city to hA; hi.
In case (1) hA1; h1i will be called a proper defeater, and in case (2) a block-
ing defeater. If hA1; h1i defeats hA2; h2i, we will also say that hA1; h1i is a
defeater for hA2; h2i.

Example 6.2 Given (K;¢) as de¯ned in example 6.1, we have the following
relations between arguments.hfl ^ f >¡¡:cg;:ci ./ hff >¡¡cg; ci

hfl ^ f >¡¡:cg;:ci c­! hff >¡¡c; b ^ c>¡¡hg; hi
hfl ^ f >¡¡:cg;:ci Âspec hff >¡¡cg; ci
hfl ^ f >¡¡:cg;:ci Àdef hff >¡¡c; b ^ c>¡¡hg; hi
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2

Definition 6.9 Let hA; hi be an argument structure. A dialectical tree for
hA; hi, denoted ThA; hi, is recursively de¯ned as follows:

1. A single node containing an argument structure hA; hi with no defeaters
(proper or blocking) is by itself a dialectical tree for hA; hi. This node
is also the root of the tree.

2. Suppose that hA; hi is an argument structure with defeaters (proper or
blocking) hA1; h1i, hA2; h2i, : : :, hAn; hni. We construct the dialectical
tree for hA; hi, ThA;hi, by putting hA; hi in the root node of it and by
making this node the parent node of the roots of the dialectical trees of
hA1; h1i, hA2; h2i, : : :, hAn; hni, i:e:, ThA1; h1i, ThA2; h2i, : : :, ThAn; hni. If an
unacceptable argument line gets formed (see de¯nition 6.15), during
the construction of this tree, it su±ces to clip the subtree rooted in
the o®ending argument that violates a condition in the de¯nition of
acceptable argumentation line.

Definition 6.10 Let ThA; hi be a dialectical tree for an argument structure
hA; hi. The nodes of ThA; hi can be recursively labeled as undefeated nodes
(U-nodes) and defeated nodes (D-nodes) as follows:

1. Leaves of ThA;hi are U-nodes.
2. Let hB; qi be an inner node of ThA; hi. Then hB; qi will be an U-node i®

every child of hB; qi is a D-node. hB; qi will be a D-node i® it has at
least an U-node as a child.

Definition 6.11 Let hA; hi be an argument structure, and let ThA; hi be its
associated dialectical tree. We will say that A is a justi¯cation for h (or
simply hA; hi is a justi¯cation) i® the root node of ThA; hi is an U-node.

According to this de¯nition, an argumentative knowledge-based system
has four possible answers for a given query h.

² Yes, if there is a justi¯cation hA; hi.
² No, if for every possible argument structure hA; hi, there exists a jus-

ti¯cation for at least one proper defeater of hA; hi.
² Unknown, if there exists no argument structure hA; hi.
² Undefined, if for every possible argument structure hA; hi, there are

no proper defeaters for hA; hi, but there exists at least one blocking
defeater for hA; hi.

Now we will introduce two additional concepts, already suggested in [11],
which will prove to be useful in what follows.
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Definition 6.12 Let hA0; h0i be an argument structure, and let ThA0; h0i be
its associated dialectical tree. Then every path ¸ in ThA0 ;h0i from the root
hA0; h0i to a leaf hAn; hni, denoted ¸ = [ hA0; h0i, hA1; h1i, hA2; h2i, . . . ,
hAn; hni], constitutes an argumentation line for hA0; h0i.

Definition 6.13 Let ThA0;h0i be a dialectical tree, and let ¸ = [ hA0; h0i,
hA1; h1i, hA2; h2i, . . . , hAn; hni] be an argumentation line for hA0; h0i. Then
every hAi; hii in ¸ can be labeled as a supporting or interfering argument as
follows

1. hA0; h0i is a supporting argument in ¸, and
2. If hAi; hii is a supporting (interfering) argument in ¸, then hAi+1; hi+1i

is an interfering (supporting) argument in ¸.
We will denote as S¸ and I¸ the set of all supporting and interfering argu-

ments in ¸, respectively.

As we can see from this de¯nition, an argumentation line ¸ can now be
thought of as an alternate sequence of supporting and interfering arguments
as in any ordered debate.

Definition 6.14 Given two argument structures hA1; h1i and hA2; h2i we
will say that they are concordant i® K[A1 [A2 6` ?. In general, a family of
argument structures fhAi; hiigni=1 is concordant i® K [ Sni=1Ai 6` ?.

Definition 6.15 Let ¸= [hA0; h0i; hA1; h1i; hA2; h2i; : : : ; hAn; hni] be an ar-
gumentation line. Then, ¸ will be called an acceptable argumentation line i®

1. Supporting (interfering) arguments in ¸ are concordant pairwise, i:e:,
K [ Ai [Aj 6` ?, for every hAi; hii; hAj; hji 2 S¸ (I¸).

2. Let hAi; hii be an argument structure in S¸ (I¸). There is no argument

hAj; hji in I¸ (S¸), such that i < j and hAi; hii defeats hAj; hji.
The ¯rst condition causes supporting (interferig) arguments in an argu-

mentation line to be consistent among themselves. The second condition
prevents circularity, forcing interfering arguments not to be defeated by pre-
vious arguments in a given argumentation line. Interfering arguments must
be constructed considering which arguments have been o®ered already.
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ference on Artī cial Intelligence, pags 144{147, IJCAI, 1985.

[8] D. L. Poole, R. Aleliunas y R. Goebel. THEORIST: A Logical Reasoning
System for Defaults and Diagnosis Technical Report, Departament of
Computer Science, University of Waterloo, Waterloo, Canada, 1985.

[9] H. Prakken. Logical Tools for Modelling Legal Arguments (Ph.D. The-
sis). Vrije University, Amsterdam, Holanda. January 1993.

[10] N. Rescher. Dialectics: A Controversy-Oriented Approach to the Theory
of Knowledge. Ed. State University of New York Press, Albany, 1977.

[11] G. R. Simari y R. P. Loui. A Mathematical Treatment of Defeasible Rea-
soning and its Implementation. Arti¯cial Intelligence, 53: 125{157,1992.

17



[12] G. Vreeswijk. Studies in Defeasible Argumentation (Ph.D. Thesis). Vrije
University, Amsterdam, Holanda. March 1993.

18


