
MAKING ARGUMENT SYSTEMS
COMPUTATIONALLY ATTRACTIVE
Argument Construction and Maintenance 1

Alejandro J. Garc¶³a, Carlos I. Ches~nevar, and Guillermo R. Simari 2

Departamento de Matem¶atica, Universidad Nacional del Sur,

Alem 1253, (8000) Bah¶³a Blanca, ARGENTINA.

Phone: (54) (91) 20776 (ext. 317), fax: (54) (91) 551447

e-mail: grs@arcriba.edu.ar

1. INTRODUCTION

Argumentative systems (Pollock,1987; Vreeswijk, 1989; Prakken, 1993) are forma-
lizations of the process of \defeasible reasoning", i:e:, reasoning to reach conclusions
that could be discarded when new evidence appears. An argument for a conclusion p
is a tentative piece of reasoning an agent would accept to explain p. If the agent gets
new information, the conclusion p together with the argument that supported p may no
longer be valid. In that way nonmonotonicity arises. The analysis of the relationships
among arguments naturally captures many features of commonsense reasoning, which
could be unclear or di±cult to introduce in other frameworks, such as Default Logic
(Reiter, 1980), Nonmonotonic Logic (McDermott & Doyle, 1980), Autoepistemic Logic
(Moore, 1985) and Circumscription (McCarthy,1980).

A query q is a request to the system for justifying q. The justi¯cation process
involves the construction of an acceptable argument for q from the information stored
in the system's knowledge base (KB). To decide the acceptability of an argument A,
possible counterarguments for A are generated. These counterarguments are in turn
tested for acceptability. Those which are accepted are then compared with A using a
speci¯city relationship, which de¯nes a partial ordering among arguments.

Computing justi¯cations requires considerable e®ort, therefore it is desirable that
the system would be able to save work already done. This repository, an Arguments

1This work was partially supported by the Secretar¶³a de Ciencia y T¶ecnica, Universidad Nacional
del Sur.

2Members of the Artī cial Intelligence Research Group (Grupo de Investigaci¶on en Inteligencia
Arti¯cial, GIIA), Universidad Nacional del Sur, ARGENTINA.

1

Base, would contain all the justi¯cations the agent has computed in the past and remain
valid.

An intelligent agent must be able to act in a changing environment, learning new
facts about the world. By incorporating a new fact into the knowledge base, old con-
clusions might become invalid, and new arguments, or counterarguments, could be
obtained. The key to the problem is to detect which of the arguments saved in the
Arguments Base will be a®ected by the addition of that new fact.

This paper describes the implementation issues of a defeasible reasoning system,
the ARGUS system, following the Simari and Loui's approach (Simari & Loui, 1992).
Our approach includes some novel features such as an Arguments Maintenance System
(AMS) to improve the performance of the reasoner, an optimized argument construc-
tion procedure, a consistency check procedure embedded in the inference engine, and
a pruning strategy for defeasible inference trees. In order to facilitate the speci¯ca-
tion of the algorithms that implement these features, new concepts and de¯nitions are
introduced.

2. ARGUMENTS

In this section we will brie°y mention the construction of a formal system IL. This
formalism will provide a language to represent the knowledge of a given agent A who
will perform her defeasible reasoning through the formulation of tentative arguments
using that language (see Simari & Loui (1992) for further details). These arguments
will be the subject of a screening process that will establish a preference order on
them. Finally, when counterarguments are found, they will in turn be compared with
the original argument using the preference partial order.

The language of IL in which A will represent her beliefs is composed of a ¯rst order
language L, plus a binary meta-linguistic relation de¯ned on the set of non-closed
literals of L. The members of the meta-linguistic relation are called defeasible rules
and they have the form ® >¡¡ ¯, where ® and ¯ must be non-closed well-formed
formulas (w®s) in L. The relation \>¡¡ " is understood as expressing that \reasons to
believe in the antecedent ® provide reasons to believe in the consequent ¯".

We denote with Sent(L) the set of sentences of L. Let K be a consistent subset
of Sent(L) called the context. K represents the beliefs of A, and can be partitioned in
two subsets corresponding to necessary (general) SentN(L) and contingent (particular)
information SentC(L). In mapping A's reality to the set K we obtain a partition of it
in two subsets KG = SentN (L) \K and KP = SentC(L)\K. Clearly, K = KG [KP .

The beliefs of A are represented in IL by a pair (K;¢), called Defeasible Logic
Structure, where ¢ is a ¯nite set of defeasible rules. K represents the non-defeasible
part of A's knowledge and ¢ represents information that A is prepared to take at less
than face value. ¢

#
denotes the set of all grounded instances of members of ¢.

Given (K;¢), we need to de¯ne when a fact can be regarded as justī ed. A defeasible
derivation is de¯ned as a derivation where some defeasible rules are used as material
implications for the application of modus ponens. Let ¡ be a subset of K [¢

#
. The

grounded literal h is a defeasible consequence of ¡, abbreviated ¡ j» h, if and only if there
exists a ¯nite sequence B1; : : : ; Bn such that Bn = h and for 1 · i < n, either Bi 2 ¡,
or Bi is a direct consequence of the preceding elements in the sequence by virtue of the
application of modus ponens or particularization (grounding) of a universally quanti¯ed
sentence. Also, we will write K [A j» h distinguishing the set A of defeasible rules
used in the derivation from the context K.

2

In ¯rst order logic the above de¯nition is enough to describe the w®s that are theo-
rems, but we need to give a criterion that will allow us to prefer one conclusion to
another. We will now introduce the formal notion of argument.

Definition 2.1 Given a context K = KG [KP , a set ¢ of defeasible rules, and
a literal h 2 SentC(L), we say that a subset A of ¢

#
is an argument structure for h in

the context K(denoted by hA; hiK, or just hA; hi) if and only if:
1) K [A j» h,
2) K [A 6j» ? and
3) 6 9A0 ½ A; K [A0 j» h.
A subargument of hA; hi is an argument hS; ji such that S µ A.

Example 2.1 Given (K;¢), K = fd¡¡>b; d; f; lg, ¢ = fb ^ c>¡¡h; f >¡¡ c; l ^
f >¡¡:cg, we say that hff >¡¡ c; b ^ c>¡¡ hg; hi is an argument structure for h.

We will refer to the collections of all possible argument structures as AStruc(¢
#
),

or just AStruc. The following de¯nitions will characterize the relations of specī city,
disagreement, counterargumentation, and defeat on AStruc.

Definition 2.2 Let D = fa 2 Lit(K [¢) : K [¢
j» ag, where Lit(A) is the set of

literals in the w® A, and hA1; h1i,hA2; h2i2 AStruc. We say that A1 for h1 is strictly
more speci¯c than A2 for h2 denoted hA1; h1i Âspec hA2; h2i, if and only if:
i) 8S µ D if KG [S [A1j» h1 and KG [S 6j» h1, then KG [S [A2j» h2.
ii) 9S µ D such that KG [S [A2j» h2 and KG [S 6j» h2 and KG [S [A1 6j» h1.

Definition 2.3 Two argument structures hA1; h1i and hA2; h2i disagree, denoted
hA1; h1i ./K hA2; h2i, if and only if K[fh1; h2g ` ?.

Definition 2.4 Given two argument structures hA1; h1i and hA2; h2i, we say that

hA1; h1i counterargues hA2; h2i in the literal h, denoted hA1; h1i
h­! hA2; h2i, if and only

if there exists a subargument hA; hi of hA2; h2i such that hA1; h1i ./K hA; hi. hA; hi
will be also called the disagreement subargument.

Definition 2.5 Given two argument structures hA1; h1i and hA2; h2i, we say that
hA1; h1i defeats hA2; h2i at literal h, denoted hA1; h1i Àdef hA2; h2i, if and only if

there exists a subargument hA; hi of hA2; h2i such that: hA1; h1i
h­! hA2; h2i and

hA1; h1iÂspec hA; hi.

Example 2.2 Given (K;¢) as de¯ned in example 2.1, we have the following relations
between arguments.

hfl ^ f >¡¡:cg;:ci ./K hff >¡¡ cg; ci
hfl ^ f >¡¡:cg;:ci c­! hff >¡¡ c; b ^ c >¡¡hg; hi
hfl ^ f >¡¡:cg;:ci Âspechff >¡¡ cg; ci
hfl ^ f >¡¡:cg;:ci À

def
hff >¡¡ c; b ^ c>¡¡hg; hi

Definition 2.6 An argument hA; hi is active at various levels as supporting
(S-argument) or interfering argument (I-argument):
i. All arguments are (level 0) S-arguments and I-arguments.
ii. hA1; h1i is a (level n + 1) S-argument if and only if there is no level n I-argument
hA2; h2i such that for some h, hA2; h2i counterargues hA1; h1i at h.
iii. hA1; h1i is a (level n + 1) I-argument if and only if there is no level n I-argument
hA2; h2i such that hA2; h2i defeats hA1; h1i.

3

Finally, we will say that an argument hA; hi is a justi¯cation for h if and only if
there existsm such that for all n ¸ m hA; hi is an S-argument of level n for h. It can be
shown that there is an e®ective procedure to decide whether hA; hi justī es h (Simari
& Loui, 1992).

3. KNOWLEDGE REPRESENTATION

The system maintains a knowledge base [K;¢] and an Arguments Base IB(Garc¶³a,
Ches~nevar & Simari, 1992). [K;¢] is the computational counterpart of (K;¢). IB stores
the justi¯cations already built by the system. The elements of K are of two kinds:
strong rules (of the form literal1 ^ literal2 ^ : : : ^ literaln¡¡> literal) 3 or particular
facts, corresponding to grounded literals. ¢ is a ¯nite set of defeasible rules of the
form literal1 ^ : : : ^ literaln >¡¡ literal. IB stores arguments already generated by the
system, along with information relating them to other members of IB.

The implementation of [K;¢] involves also the de¯nition of \>¡¡ " (defeasible im-
plication), \¡¡> " (material implication), \^" (conjunction) and \:" 4 (corresponds to
classic negation; the system assumes that : :l = l).

Example 3.1 The following example (Poole, 1988) shows how knowledge can be re-
presented using this formalism. 5

Bats are mammals. bat(X) ¡¡>mammal(X)
Bats normally °y. bat(X) >¡¡ °ies(X)
Mammals normally don't °y. mammal(X) >¡¡: °ies(X)
Dead bats normally don't °y. bat(X) ^ dead(X) >¡¡: °ies(X)
Dracula is a bat. bat(dracula)
Dracula is dead. dead(dracula)

Since the knowledge base K is a subset of L, the inference engine must consider the
contraposition for material implication. When the strong rule a¡¡>b is introduced as
part of the agent's knowledge, we are also meaning :b¡¡>:a. In order to capture this
feature, every rule inK is implemented as a list of literals that represents its clausal form.
Thus, a strong rule l1^l2^ : : :^lk¡¡>c is represented as [: l1;: l2; : : : : lk; c]. Actually,
a clausal form [l1; l2; : : : ln] represents n strong rules with consequents l1; l2; : : : ln respec-
tively, where the associated antecedents to each li are the literals l1; : : : ; li¡1; li+1; : : : ; ln
negated. This representation (Loveland, 1978; Poole, 1985b) captures the meaning of
contraposition allowing the inference engine to remain independent of the way rules
where added to K. It is important to remark that contraposition is not allowed for
defeasible rules.

In the search for a supporting argument for a grounded literal q, the system looks
¯rst for an existing justi¯cation stored in IB. Should this search fail, the system will
attempt to build an argument for q from [K;¢]. The system also allows the addition
of new facts (grounded literals) to the knowledge base K. This action activates the
Arguments Maintenance System (AMS) that scans the Arguments Base IB, eliminating
every argument incompatible with the new knowledge base. Then, the AMS builds those
new arguments the new fact has made possible. After comparing the new arguments
with the ones already stored in IB, the relation among them will be properly updated.

3A literal is an atomic formula or an atomic formula negated. Atomic formulas are formulas of the
form p(t1; t2; : : : ; tn), where p is the predicate name and t1; t2; : : : ; tn are constants or variables.

4Presented as neg in (Simari & Loui, 1992)
5Predicates, variables and constants names follow the syntactic PROLOG convention.

4

For a given query q, the system will answer:

- \unknown", if no argument for q can be built from [K;¢];

- \yes", if there exists a justi¯cation for q;

- \no", if every argument for q is defeated;

- \unde¯ned", if for every argument A for q there exists at least one non-defeated
counterargument that is not comparable for speci¯city with A.

4. THE ARGUMENT CONSTRUCTION PROCEDURE

Inference is de¯ned in terms of inference trees (Lin & Shoham, 1989). Using this
notion it is possible to rede¯ne the concepts of defeasible consequence and argument
structure in a computational oriented manner.

Definition 4.1 Let q be a goal. Then a Defeasible Inference Tree (DIT) for q is
de¯ned as follows:
i) A particular fact q is a defeasible inference tree for the goal q.
ii) If T1; : : : ; Tn are defeasible inference trees with roots l1; : : : ; ln respectively, and l1 ^
l2 : : : ^ ln¡¡> q is a rule in K, such that q is not a node in any of the trees T1; : : : ; Tn,
then the tree T with root q and T1 : : : Tn as immediate subtrees is a defeasible inference
tree for q. We say that T is built from T1; : : : ; Tn using the strong rule l1 : : : ln¡¡> q.
iii) If T1; : : : ; Tn are defeasible inference trees with roots l1; : : : ; ln respectively, and
l1 ^ l2 : : : ^ ln >¡¡ q is a rule in ¢

#
, such that q is not a node in any of the trees

T1; : : : ; Tn, then the tree T with root q and T1 : : : Tn as immediate subtrees is a defeasible
inference tree for q. We say that T is built from T1; : : : ; Tn using the defeasible rule
l1 : : : ln>¡¡ q.

The defeasible consequence meta-meta-relationship \j» " (Simari & Loui, 1992) can
be de¯ned in terms of defeasible consequence trees: we will say that ¡ j» q if there
exists a DIT for q built from the rules in ¡. If hA; hi is an argument structure for q,
the set A contains the defeasible rules of a DIT with root h. Thus, we can introduce
the following de¯nition of argument in terms of a DIT.

Definition 4.2 Let T be a DIT for a literal h, and A the set of defeasible rules used
in the construction of T . We say that hA; hi is an argument structure for h if: (1)
K [A 6j» ? and (2) 6 9A0 ½ A; K [A0 j» h .

The de¯nition 4.2 gives a way to obtain an argument without building ¢
#

as de¯-
nition 2.1 requires. The system builds a DIT for a grounded literal q using backward
chaining, trying to unify q with some rule R from [K;¢]. If this uni¯cation succeeds,
then the antecedents of R become new goals to be satis¯ed. Uni¯cation (Lloyd,1987)
is extended to consider defeasible rules. Once the DIT for q has been built, the set A
of defeasible rules used in it will be an argument for q (see de¯nition 4.2) when veri¯es:
(1) K [A 6j» ? (consistency) and (2) 6 9A0 ½ A; K [A0 j» h (minimality). Next
we will discuss brie°y these two conditions and the pruning strategy used during the
construction of defeasible inference trees.

Let [K;¢] be the knowledge base of an agent A, and let hA; hi be an argument
structure. We will say that hA; hi is consistent with respect to K, i:e:, K [A 6j» ?, if
and only if there is no P 2 (K [A)

` 6 such that K [Aj» P and K [Aj» :P .

6R
`

represents the classic deductive closure of R.

5

Proposition 4.1 Let K be a consistent set and let hA; hi be an argument structure
for h and let l1 ^ l2; : : : ln>¡¡ c be a grounded instance of a defeasible rule in A. If
K 6` :c, then the rule l1^ l2; : : : ln>¡¡ c can be used to extend K with c in a consistent
way, i:e:, K0 = K [fcg is consistent. 2

The consistency of a DIT for h is checked applying a recursive procedure to each
subtree, starting from the leaves and ending in the subtree for h, i:e:, the DIT itself.
The leaves of a DIT are facts belonging to a consistent K. Proposition 4.1 says that if
we start with a consistent knowledge base K, then a defeasible rule l1; : : : ln>¡¡ c can
be used as valid only if the consequent c can be assumed consistently, i:e:, K 6` :c.
When K ` :c the rule must be discarded, and the current subtree must be rebuilt.
In this way veri¯cation is done only once for each rule and reconstruction is done only
when necessary.

Example 4.1 Let K = f penguin(X) ¡¡> bird(X), penguin(petete), penguin(X)
¡¡> :flies(X) g and ¢ = f bird(X) >¡¡ f lies(X) g be a knowledge base. Then
h f bird(petete) >¡¡ flies(petete) g, f lies(petete) i is not an argument structure for
flies(petete), since K ` :flies(petete).

Given a grounded literal q, the minimality condition in de¯nition 4.2 is checked
by building all possible sets A1; A2; : : : ; An of defeasible rules, such that for every Ai,
conditions 1 and 2 of the de¯nition 4.2 hold. The system will discard those sets that
have the property of being supersets of any other. The remaining sets of defeasible
rules will be arguments for q.

The roots of the subtrees built during the construction of a DIT T for q are recorded
locally. Since a ground literal l could be the root of many subtrees of T , this pruning
strategy speeds up the construction of an argument A for q by building just one subtree.

5. JUSTIFICATIONS

The process of ¯nding an argument for a ground literal h that results in a justi¯-
cation is quite involved. For a given h, the system's answer will be determined by the
posibility of obtaining a justi¯cation for h as follows: ¯rst, the system will try to build an
argument structure hA; hi for h from [K;¢]. If such hA; hi exists, all counterarguments
and defeaters for hA; hi (if any) are generated. Since defeaters and counterarguments
are argument structures, they can have also other defeaters, which can have in turn de-
featers, and so on. If every counterargument and every defeater for hA; hi is defeated,
then the argument A for h becomes a justi¯cation for h. Nevertheless, if any of the
defeaters or counterarguments for hA; hi has not been defeated, then the system will
try to ¯nd another argument which justi¯es h.

We have formalized this situation in terms of activation levels for arguments (see
de¯nition 2.6). It has been shown (Simari & Loui, 1992) that there exists a cut level
such that all the surviving arguments at that level will be active as S-arguments and
I-arguments at the next level. This fact guarantees the existence of an e®ective pro-
cedure for the computation of justi¯cations since every S-arguments hA; hi active in
the cut level justi¯es h. Nevertheless, this procedure is computationally expensive. For
that reason, we will analyze the problem from an alternate point of view of defeasible
inference trees.

Definition 5.1 Let hA; hi be an argument structure. A defeaters tree for hA; hi, de-
noted TD, is recursively de¯ned as follows:

6

i. An argument structure hA; hi with no defeaters is a defeaters tree for hA; hi with
root hA; hi.
ii. An argument structure hA; hi with defeaters hA1; h1i; hA2; h2i; : : : ; hAn; hni is a de-
featers tree with root hA; hi and its children nodes are the defeaters trees for hA1; h1i,
hA2; h2i, . . . , hAn; hni.

Definition 5.2 Let TD be a defeaters tree for an argument structure hA; hi. Its nodes
can be labeled as follows:
i. Leaves of a TD are undefeated-nodes.
ii. An inner node (including the root) is:
-Defeated-node if and only if it has at least a child that is an undefeated-node.
-Undefeated-node if and only if all its children are defeated-nodes.

Definition 5.3 Let hA; hi be an argument structure for h. We say that TI is an
interference tree if TI is a defeaters tree for hA; hi and its root is an argument structure
hS; ri that is a counterargument for hA; hi and it is labeled as undefeated-node.

Definition 5.4 Let hA; hi be an argument structure for h. We say that hA; hi is a
justī cation for h if there is no interference tree TI for hA; hi.

From these de¯nitions, when the system tries to justify h, there will be four possible
answers: \yes", \unknown", \no" and \unde¯ned". The answer will be \yes" if there
exists a justi¯cation for h. The system will answer \unknown" if there is no argument
structure hA; hi. The answer will be \no" if every argument structure hA; hi has at
least one interference tree TI whose root hS; ri is a defeater for hA; hi. Otherwise, the
answer will be \unde¯ned".

6. THE ARGUMENTS MAINTENANCE SYSTEM

The reason for introducing the Arguments Base IB is to save work already done
when looking for a justi¯cation. If no new facts are added to K, some queries could be
answered just by looking in IB without having to recurse to the inference mechanism.
On the other hand, it is desirable that a system modelling the behavior of an intelligent
agent will have the capability of internalizing new information dynamically. The system
provides this service, along with the capability of adding particular facts (grounded
literals) to the knowledge base K. The Arguments Base IB could be a®ected when
new facts are added to K: new argument structures could be generated and some
arguments in IB would become invalid. In order to keep the contents of IB updated,
the Arguments Maintenance System (AMS) will revise IB automatically every time a
new fact is introduced.

6.1. Invalidation of Arguments stored in IB

Adding consistently a particular fact f to K could render invalid some of the ar-
guments stored in IB. Looking at de¯nition 2.1 we see that condition (1) will remain
valid no matter what we add to K. The situation with respect to the consistency and
minimality of the arguments is clearly di®erent.

We will ¯rst analyze the consistency condition. Let K0 be the expansion of K
by f , i:e:, K0 = K [ffg. An argument A = fR1; R2; : : : ; Rng 2 IB is consis-
tent with respect to K0 (that is, K0 [A 6j» ?), if for every grounded defeasible rule

7

Ri = a1^ a2 ^ : : : ^ ak >¡¡ ci 2 A holds K0 [fR1; : : : ; Ri¡1g 6j» :ci for 1 · i · n. If A
is consistent with K0, then A remains in IB, otherwise it is discarded.

Let hA; hi be an argument structure. Minimality of hA; hi could be violated when
the new fact allows the construction of a new argument A0 for h such that A0 ½ A.
If no consequent c of any defeasible rule Ri in A is such that K [ffg ` c, then A
remains minimal. On the other hand, if K [ffg ` c for some rule Ri in A, then Ri

is a redundant rule in A, and can be eliminated. After eliminating all redundant rules
from A, a minimal argument A0 is obtained. Finally, A will be replaced by A0 in IB.

6.2. Generating new arguments

We also need to update IB when the addition of a new fact allows the construction of
new arguments. Let K0 = K [ffg be the expanded knowledge base by the addition of
f. In order to generate the new argument structures, the AMS uses a combined method
of forward{chaining along with the defeasible inference backward{chaining mechanism.
The method used for updating IB is the following: the addition of a new fact f 7 to K
could permit the ¯ring of some rule R (weak or strong) that could not be ¯red from
K alone. The rule R will be ¯red if f uni¯es with one of the literals in the antecedent
of R, and the remaining literals have a DIT (obtained by backward-chaining). Thus,
the AMS obtains a new argument structure hA; hi, where h is the consequent of R.
The literal h could also unify with some other literal in the antecedent of another rule
R0. Then, a new argument for the consequent of R0 can be obtained. The process will
continue until all new arguments the new fact has made possible have been generated.

Example 6.1 Consider the following knowledge base:

K = f bird(petete), penguin(X)¡¡>:flies(X) g

¢ = f bird(X)>¡¡ flies(X),
penguin(X)>¡¡ swims(X),
bird(X)>¡¡ lives on land(X),
lives on land(X)^ swims(X)>¡¡ lives near water(X) g

and an Arguments Base IB containing

hfbird(petete)>¡¡ flies(petete)g; f lies(petete)i
hfbird(petete)>¡¡ lives on land(petete)g; lives on land(petete)i

After adding the fact penguin(petete) to K, the following steps are taken:

1. The argument hfbird(petete)>¡¡ f lies(petete)g; flies(petete)i becomes invalid,
since f lies(petete) is no longer consistent with the knowledge base K.

2. The rule penguin(X) >¡¡ swims(X) is used to build the argument h f
penguin(petete) >¡¡ swims(petete) g, swims(petete) i, and swims(petete) be-
comes a new fact to be considered in the forward{chaining process.

3. The fact swims(petete) uni¯es with one literal in the antecedent of
the rule lives on land(X) ^ swims(X) >¡¡ lives near water(X). Since
lives on land(petete) has a DIT, this rule will be ¯red, allowing the generation
of the argument h f penguin(petete) >¡¡ swims(petete), lives on land(petete) ^
swims(petete) >¡¡ lives near water(petete) g, lives near water(petete) i:

7With \new fact f", we mean \a grounded literal f such that K 6` f"

8

Let N = fhN1; h1i; : : : ; hNk; hkig be the set of the newly formed argument structures
created after the addition of f to K. For each Ni in N , the AMS will ¯nd out if Ni

counterargues any member hA; hi in IB. The appropriate action will be taken, updating
the information associated to hA; hi and Ni.

There are two special cases in which the addition of f to K does not a®ect IB. These
are: (i) f is an instance of a literal where the combination of the predicate letter and
arity does not appear among the literals of K [¢, and (ii) f is an instance of a literal
such that K ` f.

7. CONCLUSIONS

The way from a solid theoretical foundation to e±cient argument based systems
promises to be full of interesting aspects. We have introduced some conceptualizations
in terms of trees (inference trees, defeaters trees, etc:) obtaining an easier way of speci-
fying our algorithms. The updating of an Arguments Base after the addition of a new
fact to the knowledge base is the ¯rst step in the direction of a system that would allow
to update the knowledge base (facts and strong rules) and the set of defeasible (weak)
rules. Finally, Argument Based Systems show the possibility of developing Knowledge
Based Systems beyond Rule Based Systems.

8. REFERENCES

Garc¶³a, A.J., Ches~nevar,C.I. and Simari,G.R., 1993, Bases de argumentos: su manteni-
miento y revisi¶on, in XIX Conferencia Latinoamericana de Inform¶atica, 22as. Jornadas

Argentinas de Inform¶atica e Investigaci¶on Operativa.

Lloyd,G., 1987, Foundations of Logic Programming, Springer-Verlag, 2nd. Edition.

Loveland,D., 1978, Automated Theorem Proving: A Logical Basis, North Holland.

McCarthy,J.,1980, Circunscription { A form of non-monotonic reasoning, Arti¯cial Intelli-
gence 13: 27{39.

McDermott,D. and Doyle,J., 1980, Non-monotonic logic I, Arti¯cial Intelligence, 13: 41{72.

Lin,F. and Shoham,Y.,1989, Argument systems: a uniform basis for nonmonotonic reason-
ing, STAN-CS-89-1243, Stanford University, Department of Computer Science.

Moore,R.C.,1985, Semantical considerations on nonmonotonic logic, in Arti¯cial Intelli-
gence, 25:(1) 75{94.

Pollock,J.L., 1987, Defeasible reasoning, in Cognitive Science, 11:481{518.

Poole,D.L., 1985a, On the comparison of theories: preferring the most speci¯c explanation,
in Proceedings of the Ninth International Joint Conference on Arti¯cial Intelligence,
pp. 144{147, IJCAI.

Poole,D.L., Aleliunas,R. and Goebel,R., 1985b, THEORIST: A logical reasoning system for
defaults and diagnosis, Technical Report, Departament of Computer Science, University
of Waterloo, Waterloo, Canada.

Poole,D.L., 1988, A logical framework for default reasoning, in Arti¯cial Intelligence 36,
pp. 27{47.

Prakken,H.,1993, Logical Tools for Modelling Legal Arguments, PhD Thesis, Vrije Univer-
sity, Amsterdam, Holland.

Reiter,R., 1980, A logic for default reasoning, in Arti¯cial Intelligence, 13: 81{132.

9

Simari,G.R., and Loui,R.P., 1992, A mathematical treatment of defeasible reasoning and
its implementation, in Arti¯cial Intelligence, 53: 125{157.

Vreeswijk,G.,1991, On the feasibility of defeasible reasoning, in Knowledge Representation
'91.

10

