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Abstract 

Simari, G.R. and R.P. Loui, A mathematical treatment of defeasible reasoning and its 
implementation, Artificial Intelligence 53 (1992) 125-157. 

We present a mathematical approach to defeasible reasoning based on arguments. This 
approach integrates the notion of specificity introduced by Poole and the theory of warrant 
presented by Pollock. The main contribution of this paper is a precise, well-defined system 
which exhibits correct behavior when applied to the benchmark examples in the literature. 
It aims for usability rather than novelty. 

We prove that an order relation can be introduced among equivalence classes of 
arguments under the equi-specificity relation. We also prove a theorem that ensures the 
termination of the process of finding the justified facts. Two more lemmas define a reduced 
search space for checking specificity. 

In order to implement the theoretical ideas, the language is restricted to Horn clauses for 
the evidential context. The language used to represent defeasible rules has been restricted in 
a similar way. 

The authors intend this work to unify the various existing approaches to argument-based 
defeasible reasoning. 

1. Introduction 

Recent courage to deviate from standard practice in nonmonotonic reason- 
ing has led to an influx of formalisms. Each achieves nonmonotonicity in a 
first-order language where entailment is not based on fixed points, nor on 
model minimization. Most avoid intensional contexts by semantic ascent, 1 thus 
supplementing the proof theory in the metalanguage. This obviates the need 
for model-theoretic accounts of new syntax, since there is no new syntax. 

1 Quine's phrase, in private communication. 
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Inspiration has come from conditional logics (Nute [9, 10], Delgrande [1], 
Glymour and Thomason [3]) or inductive logics. In the latter case, both 
induction's form (Loui [7], Pollock [12]) and its effect (Geffner and Pearl [2], 
Neufeld [8]) have been copied. All of the resulting systems incorporate a 
specificity defeater, analogous to the subclass defeater in inheritance with 
exceptions (since Touretzky [20]). 

Some of these authors have found use for objects called arguments (also 
theories). Other systems are based on irrelevance. This paper is concerned with 
those based on arguments. 

Arguments are prima facie proofs that may make use of assertions that one 
sentence is (defeasible) reason for another. They indicate support for a 
proposition, but do not establish warrant once and for all; it matters what other 
counterarguments there may be. Arguments may have stucture (Loui [7], 
Pollock [12]) or may just be collections of supporting sentences (Poole [14], 
Geffner and Pearl [2]). There is widespread agreement that arguments in these 
systems generalize paths in inheritance systems.; 

As is the case in inheritance, there is a "clash of intuitions" that has resulted 
in a plethora of theories. There are at present few ways of classifying the 
systems. Our intent, in defining yet another system, is not to add to the 
inventory. In fact, this paper attempts to bring together the prominent systems 
based on arguments. A system is defined that takes its form from Loui (which 
in turn evolved from that of Kyburg [6]) and which combines the rules of Poole 
and of Pollock. For most of the AI audience, this will effectively condense 
three systems into one, remedying deficiencies of each. 

More importantly, this system is defined in a mathematically more rigorous 
manner. Past definitions (especially Poole's and Loui's) did not have the 
precision nor the completeness to serve as a foundation for future mathemati- 
cal work. It is no accident that the statement of the system here allows concise 
proof of nontrivial properties. 

1.1. Poole and Pollock combined 

Poole treats specificity, i.e., a comparative measure of the relevance of 
information, in an elegant and usable way, but does not describe adequately 
when to apply his specificity comparator to interactions among arguments. On 
the other hand, Pollock treats the interaction among arguments properly while 
rejecting specificity. Pollock rejects specificity both as a generalization of the 
subclass defeater and as a useful shorthand. This places him in an extreme 
minority in the defeasible reasoning community. 

In our view, Poole and Pollock fail to develop the best ideas in their systems 
to produce a system of lasting usefulness to the knowledge representation 

General discussion during the Workshop on Defeasible Reasoning with Specificity and Multiple 
Inheritance, St. Louis, MO (1989). 
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community. Poole [13] has implemented a system of defeasible reasoning 
which does not address interactions among arguments. Pollock has taken his 
research in a direction which is too general for AI's uses. 

The system defined here combines the ideas of the two. But the main 
contribution of this paper is a precise, well-defined system which exhibits a 
correct behavior when applied to the benchmark examples in the literature. 3 

We take the knowledge of agent a to be divided into a set of defeasible rules 
zl and a set of well-formed formulas (wffs) 2[ in the standard formal logic 
sense. The set Y{ is further divided into (1) grounded wffs: the contingent part 
of Y{; and (2) ungrounded wffs, the necessary part of 2[. Evidence suggests new 
tentative conclusions; a potential conclusion p will be suggested when it is 
consistent with 2{ and has a supporting subset of za which, in conjunction with 
Y{, can derive p without deriving a contradiction at the same time. 

Accepting or rejecting p is a matter of comparing arguments supporting p, 
their counterarguments, their rebuttals, and so on. p must be consistent with 
2/, but its interaction with subsets of A could be more interesting. If a subset S 
of A supports p, we will say that there exists a defeasible derivation of p from 
S. The subsets form argument structures, and are ordered according to Poole. 

Poole claims his specificity relation is based on Popperian ideas, but some 
find it unintuitive or lacking justification. We view it as a convention: arguably, 
the most useful convention to date. It is based on the four-part observation 
that 

(1) two conflicting arguments were made; 
(2) sometimes one argument can be made while the other cannot; 
(3) the reverse is not true; 
(4) thus, one argument is more particular about the current evidence than 

the other; it is more specific. 

Extrapolating from the total evidence requirement of inductive logic, being 
more particular about the evidence makes an argument stronger. Another  way 
to rationalize the rule is pragmatic: if the more specific argument does not 
defeat the less specific, then it is never an effective argument, since the less 
specific argument can always be made as a counterargument whenever the first 
argument can be made. This is unacceptable for representing knowledge. 

Pollock's method of defining which arguments survive counterargument and 
actually justify their conclusions is appealing. Essentially, it propagates defeat 
from arguments that have no defeaters, and it could be defined in any of a 
number of ways. We retain Pollock's original inductive step to recognize his 
contribution, but the rule could be expressed as TMS-like labeling, or as 
A N D - O R  graph evaluation. We have two kinds of labels while Pollock has 
only one: this is a purely technical variation on Pollock that we introduce 

3 Actual solution of two dozen such examples can be obtained from the authors. 
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because defeat is implicit in this theory, while it is explicit in Pollock's. It is the 
implicit defeat arising from comparison of specificity that makes the hybrid 
system attractive for actual use. 

2. Arguments and specificity 

We will construct a formal system fl_ with the objective of providing a 
language in which to represent the knowledge of a given agent a and in which 
to perform defeasible reasoning. 

The language of ~_ is composed of a first-order language LP, plus a binary 
metalinguistic relation among members of 2£. Any axiomatization of ~ will do 
for our purposes, and we will use the standard connectives and punctuation 
symbols freely without explicitly introducing them. We assume that the rules of 
inference attached to the axiomatization are modus ponens and generalization. 
The members of the metalinguistic relation are called defeasible rules and they 
have the form a > - / 3 ,  where a and/3 are well-formed formulas (w):s) in L¢, 
which must contain free variables, e.g., they are nonclosed wffs. The relation 
" > - "  among L£'s wffs is understood as expressing that "reasons to believe in 
the antecedent a provide reasons to believe in the consequent /3" .  Variables 
with the same name on both sides of the rule are assumed to be the same. An 
instance of an open defeasible rule is obtained by replacing all the flee 
variables by appropriate constants. When no confusion is possible we will use 
the term defeasible rule to refer to the open defeasible rule and to its grounded 
instances. 

The set Sent(~) of sentences of ~ ,  that is the set of closed well-formed 
formulas in ~ ,  can be partitioned in two subsets, corresponding to necessary 
and contingent information. Necessary information is the context in which 
defeasible rules are provided. Although a purely syntactic distinction might not 
be possible on philosophical grounds, we normally take sentences with vari- 
ables or implication to be necessary. Thus, the first subset contains the 
grounded sentences Sentc(~ ) and the second subset contains nongrounded 
sentences SentN(Sg), i.e., 

Sent(~) = Sentc(3f ) U SentN(~ ) . 

Obviously, 

Sentc(5£ ) fq Sent~(~) = 0. 

The names used for the subsets reflect the view that the grounded sentences in 
Sentc(S£ ) represent information depending on the individual constants of the 
language. Those individual constants are contingent to the reality being repre- 
sented. On the other hand, the sentences in SentN(Sf ) are wffs containing 
variables. That characteristic allows them to convey properties that single out a 
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class of  worlds, i.e.,  worlds where the relations among individuals are the same 
regardless of the local individuals. We choose to call these sentences the 
necessary facts, because without them the world would not be as it is. 

The  knowledge of a is represented in IL by a pair (~(, A), where ~( is a subset 
of Sent (~) ,  and A is a finite set of defeasible rules. The pair (Y{, A) will be 
called a defeasible logic structure. Y{ represents the indefeasible part of a's 
knowledge and A represents tentative information, i.e., information that a is 
prepared to take at less than face value. In mapping a's reality to a subset ~ of 

we obtain a partition of ~ in two subsets 

~r~ = SentN(~)  n Y{ , Y{c = Sen tc (~ )  n ~ . 

Clearly, 9f = ~ y  U Y{c. The only condition on ~ is consistency, i.e., 2~ ~ -± .  
Sometimes,  when using ~r, we will refer to it as the context, and ~r will be 
considered as a set of wffs or as the conjunction of them depending on the 
situation. 

Having defined our knowledge representation language we need to introduce 
a notion of entailment, or inference, which is somewhat different from the one 
used in first-order languages. That  is, given a defeasible logic structure (Y{, zl), 
we need to define what other  facts can be sanctioned as justified. Our formal 
system introduces this notion in a way that is not axiomatic. For a complete 
definition we need further develop our formalism. We will present the syntactic 
part here. The rest will be introduced in the next sections. 

Given a member  A of Sent (~) ,  and set F = {A  1, A 2, . . . ,  An} ,  where each 
A i is a member  of ~ or a grounded instance of a member  of za, we will 
establish a meta-meta-relationship "~--", called defeasible consequence, be- 
tween F and A in the following way. A well-formed formula A will be called a 
defeasible consequence of the set F as described above, if and only if there 
exists a sequence B 1 , . . . ,  B,, such that A = Bm and, for each i, either B e is an 
axiom of ~ or B i is in F, or B i is a direct consequence of the preceding 
members  of the sequence using modus ponens or instantiation of a universally 
quantified sentence. The grounded instances of the defeasible rules are re- 
garded as material implications for the application of modus ponens. 4 The 

sequence B~ . . . . .  B m will be called a defeasible derivation or just a derivation. 
We use F F-A as an abbreviation of A is a defeasible consequence of  F. If 
necessary, in order  to avoid confusion with the context, we write F F'~ A. We 
also will write A t . . . . .  A ~ A  instead of {A 1 . . . . .  A ~ } ~ A ,  and ~ U  
T ~ A, making explicit the distinction between the context ~{ and a set T of 
defeasible rules used in the derivation. 

In first-order logic the above definition is enough to describe the wffs that 
are theorems of F, but for us the situation is different because we need to 

4 Since modus ponens is unidirectional, this does not imply reasoning by modus tollendo ponens,  
or contrapositive reasoning. In fact, the latter two are not allowed in this system. 
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introduce the tentative nature of the conclusions, e.g., we need to give a 
criterion that will allow us to prefer one conclusion over another. That 
criterion will be the specificity relation among arguments. We will now 
introduce the formal notion of arguments and later we will define the specificity 
relation among those formal objects. 

2.1. Arguments 

Derivations, as defined above, make use of some grounded instances of 
defeasible rules from a. The set of grounded defeasible rules characterize the 
derivation and we will give the name argument basis to that set. In order to 
facilitate the following discussion we introduce the set /1 ~ of all grounded 
instances of members of A produced by using the individual constants in 5~. 

Definition 2.1 (Preliminary). Given a context Y{= YdN U 5r{ c and a set A of 
defeasible rules we say that a subset T of A ~, is an argument for h E Sentc(~ ) 
in the context 5~{, denoted by ( T, h ) ~ ,  if and only if: 

(1) ~{U T ? h ,  
(2) u T 
The pair ( T, h ) :~r will be called an argument structure. 

Remark 2.2. When possible we will drop the reference to the context and we 
will write (T, h)  meaning (T, h )~ .  We will refer to the collection of all 
possible argument structures as AStrue(A ~) or just AStruc. There is a dis- 
tinguished argument, (0, ~ ) ,  for any context Y{ with finitely representable 
closure; i.e., no rules are necessary to support the conjunction of the atoms of 
the deductive closure (Y{~) of the knowledge in 5f. Finally, for (T, h)  we will 
assume that the set T is minimal, or nonredundant in the sense that it does not 
contain any rule that is unnecessary for the inference of h. This is a sort of 
"Occam's razor" principle for arguments. 

Definition 2.3 (Revised). Given a context ~ = YdN U Ydc and a set A of defeas- 
ible rules we say that a subset T of A ~, is an argument for h E Sentc(~ ) in the 
context ~ ,  denoted by (T, h ) x ,  if and only if: 

(1) Y/'U T ~ h ,  
(2) x u  
(3) ~I'T'CT, Y{UT'~--h. 

Example 2.4. Let 9{ = {P(a), Q(a)} and 

A : {P(x) >-- R(x), Q(x) v R(x) >- H(x), M(x) >- N(x)} 

be the context and defeasible rule set respectively. Therefore the subset T of 
grounded instances of defeasible rules in A, 
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T = {P(a) > -  R(a), Q(a) ^ R(a) >-- H(a)} ,  

is an argument structure for H(a), i.e. { T, H(a)) is an argument structure. 

Definition 2.5. Let (T, h) be an argument structure for h, and (S, j} an 
argument structure for ] such that S_C T. We will say that (S, ])  is a 
subargument of (T, h) and use the notation (S, ]) _ (T, h) ,  overloading the 
symbol "C_". 

Example 2.6. Given any argument structure (T, h}, the two argument struc- 
tures (0, 5~[ ~ ) and ( T, h} are two trivial subarguments of it. 

Example 2.7. In the conditions of the above example, 

S1 = {e(a) > -  R(a), O(a) ^ R(a) >- H(a)} 

is an argument for H(a), and 

S2 = (e(a) >-- R(a)} 

is an argument for R(a). We have the following relations among the argument 
structures: (S~, H(a)) C ($1, H(a)} and ($2, R(a)) C (S~, H(a)}. 

Sometimes it will be necessary to talk about the defeasible rules in terms of 
their antecedents and consequents. The following definitions introduce three 
operators for this purpose. 

Definition 2.8. Let T be a finite subset of A ~. We will introduce two operators 
over sets of defeasible rules. They are the operator An(.), which applied to T 
will return the set of antecedents of its rules, and Co(.), which applied to T will 
return the set of consequents of its rules. Sentc(~ ) is normally restricted to 
conjunctions from An(A ~ ). 

Example 2.9. Given the argument 

T = {A(r)>-- D(r), B(r) ^ O(r)>--- C(r), C(r)>--- E(r)} , 

we have 

An(T) = {A(r), B(r), D(r)},  Co(T) = {D(r), C(r), E(r)}.  

It is also useful to have access to the set of literals used in the defeasible 
rules of an argument structure. 

Definition 2.10. Let (T, h) be an argument structure. Then the operator Lit(.) 
will return the set of literals in T with the exception of h, i.e., Lit(( T, h}) = 
An(T) U Co(T) - {h}. 
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Example 2.11. Given the argument T as in Example 2.9, we have 
Lit((  T, E(r)) )= (A(r), B(r), C(r), D(r)}. 

2.2. Specificity 

Having defined these objects we would like to establish certain binary 
relations on AStrue(A *) in such a way that it would help us to choose the 
"better" argument structure that supports a conclusion. The following defini- 
tions, essentially Poole's [14], will characterize this relation. 

Definition 2.12. Given two argument structures (T~,h~) and (T2, ha) in 
AStrue, we say that T~ for h~ is strictly more specific than T 2 for h 2 denoted by 

(Tt,  hi)  >spec (T2, h2) ,  

if and only if: 
(1) VeE  Sentc(~g ) such that 5( N U (e) U T~ ~ h~ and 9{ N U {e} ~ h~ also 

Y{y U {e} U T 2 ~ h2, and 
(2) 3e  E Sentc (~  ) such that: 

Y{N U {e} U T 2 ~ h 2 (activates T2), 

Y{N U (e} U T l ~ h 1 (does not activate TI),  

YdN tO {e} ~- h 2 (nontriviality condition). 

Remark 2.13. The term activates appearing in the definition is used with the 
following meaning: together with Y(N the argument T is enough to construct a 
defeasible derivation o f  h. 

Another important relation among argument structures is the notion of being 
equally specific. 

Definition 2.14. Two argument structures T~ for h 1 and T 2 for h 2 are equi- 
specific, denoted by 

( T,, hl ) ~spec ( T2, h2) , 

when the following condition holds, 

Ve E Sen tc (~  ) , 

ST{ N U {e} U T 1 ~ h~ if and only if 5r~ N U {e} U T 2 ~ h 2 . 

Finally the combination of both notions gives the following definition. 

Definition 2.15. We say that an argument structure T 1 for h I is at least as 
specific as an argument structure T 2 for h 2 denoted by 
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<T,, h,> ->spec <T2, h2), 

if and only if <T e, h2) "~'~spec <T1, h,)  or <T,, h,)  >sp¢¢ <T2, he). 

Some examples will clarify the concept. 

Example 2.16. The argument structure <{A(r) ^ B(r) >- C(r)}, C(r)> is more 
specific than ( { A ( r ) > - - 7  C(r)},-7 C(r)) because every time the first argument 
can be activated to support C(r) the second also supports --1C. But, on the 
other hand, A(r) alone can activate the second argument structure but does not 
activate the first. So 

({A(r) A B(r)>-- C(r)}, C(r)> >~pe~ ( { A ( r ) > -  -~C(r), mC(r)>. 

Example 2.17. The argument structure <{A(r) >-- ~C(r)},-aC(r)> is more 
specific than the argument structure ({A(r)>--  n(r), B(r )>-  C(r)}, C(r)> be- 
cause every time the first argument can support --1C(r) the second also supports 
C(r). But, on the other hand, B(r) alone can activate the second argument 
structure but does not activate the first. So 

({A(r) >-- --a C(r)}, 7C(r)> >spec ({A(r) >-- B(r), B(r) >-- C(r)}, C(r)> . 

Remark 2.18. Whenever no confusion is possible we will drop the subscript 
"spec" in the symbols " >  . . . .  > " and " ~  " writing instead " > " ,  " > "  s p e c  ~ - - s p e c  ~ s p e c  

and " ~ " .  

An argument and its subarguments are related by the specificity relation in a 
natural, expected way. 

Lemma 2.19. Let < T, h) be an argument structure and < S, j> a subargument of  
( T, h > . Then < T, h> is more specific than < S, j > , i.e., < T, h) >- ( S, ]>. 

The equi-specificity " ~ "  relation decomposes AStruc into disjunct subsets of 
equi-specific arguments, i.e., establishes a partition on it. This porperty is 
better expressed in the following lemma. 

Lemma 2.20. The equi-specificity relation among members of  AStruc is an 
equivalence relation. 

The " ~ "  equivalence relation will help us to introduce an order relation in 
the set AStruc/~,  i.e., the quotient set of AStruc by the equivalence relation 
" = " .  This order relation is induced by "_>". First, we observe that >_ defines a 
quasi-ordering in AStruc, i.e., the relation is reflexive and transitive. If we lift 
the relation to the quotient set AStruc/= of the equivalence classes defined by 
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"~ ' "  in AStruc the new relation will define a partial order over those classes, as 
is shown in the lemma below. 

Remark 2.21. For all (T, h)  in AStruc the notation [(T,  h)] represents the 
equivalence class of (T, h)  in AStrue/-~. 

Definition 2.22. We define the relation "_2sp~c" in the quotient set AStruc/--~ as 
follows. Given [( T l, h I )] and [( T 2, h2) ] in AStruc/~-, 

[ (T , ,  h , ) ]  2 [ ( T  2, h2) ] if and only if (T , ,  hi) ~ (T2, h2).  

Again, whenever possible we will drop the "spec" subscript from "-~spec" 
writing "_2".5 

The introduction of the > relation of AStrue has the objective of providing a 
way to select the most "appropriate" argument structure. In that sense the 
following lemma establishes the fundamental property regarding order in 
ASt ruc /= .  

Lemma 2.23. The relation 2_ defined in AStruc /~  is a partial order. 

The next lemma defines a reduced search space for checking specificity. 

Lemma 2.24.* Let (Tl ,  h~) and (T2, h2) be two argument structures in 
AStruc. Then the following conditions are equivalent: 

(1) ( T , , h , )  >_ (T2, h2) , 
(2) Vx ~ An(T2) , Y[N to An(T1) to T2 ~ x. 

Proof. 

(1) implies (2). Assume that (T~, h~) >_ (T  2, h2). Hence, (T  1, h i )  is at 
least as specific as any subargument of (T2, h : ) .  There is always a subargu- 
merit, S, of (T2, h2) for any x in An(T2) (by the nonredundant property of 
( T  z, h2) ). (T~, h 1 ) >_ (S, x) .  Since An(T~) activates T~ for hi ,  it activates S 
for x. Therefore, ~[N U An(T1) U T 2 ~ x for all x E  An(T2). 

(2) implies (1). Assume that e in Sentc(Sf ) is such that 3'[ N tO {e} to TI ~-- h~. 
We want to show that Y{~ U {e} tO T z ~ h 2. Because of the quantification in 
(2), every An(T2) can be derived, therefore every Co(T2) is defeasibly 
derived; hence (T2, h2) is activated, i.e., Y{NU{e}UT2~h2 .  That is, 
(Tt ,h~)>_(T2,  h2). [] 

Lemma 2.25. Let (Zl, hi) and (T2, h2) be such that ( TI, hi) >_ { T2, h2). Let 

5 As noted by a referee, we do not state the theorem that given (T1, hl)~-(T2, h2) and 
( T I, h I ) > ( T 3, h 3 ) ,  also ( 7"2, h2) >_ ( 7"3, h3)  , but this is immediate from the definitions. 

* At press time, this lemma and its proof are found to be in error. A corrigendum is planned by 
the authors. 
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(T2, h2) be such that V x ~  Co(T2), YdU Tl~-x. If  (T2, h2) contains a sub- 
argument structure (R, p),  then (T  1, h~ ) contains a subargument structure 
(S, p) such that (S, p) > (R, p).  

Proof. The subargument structure (R, p )  of ( T2, h 2) is formed by the subset 
R of T:. Given that every member in Co(T2) can be inferred using the rules in 
T~ and Yt, we can distinguish which rules are necessary to prove the subset 
Co(R) of Co(T2), calling it S. We contend that (S, p )  is the required 
subargument. Obviously, for all x in Co(R), Y{ U S ~- x, by its own definition. 
Therefore, any literal necessary to infer p from R is available in S. For the 
same reason (S, p )  _> (R, p ) .  [] 

This establishes conditions for discarding arguments which reduces the 
search for argument defeaters. 

Remark 2.26. Given two arguments (T l ,h l )  and (T2, h2) satisfying the 
conditions of the above lemma, we will say that (T  1, h 1 ) covers (T 2, h2). 

3. An algebra of arguments 

A very good question regarding arguments is about the kind of operations 
that it is possible to define on them. We will devote the next few sections to 
consider certain operations on ~ ( ( T ,  h ) ) =  {(T i, hi)))i~ 1 the family of sub- 
arguments of an arbitrary argument structure ( T, h) E AStruc, where I is a set 
of indices, and explore some of its properties and interrelations. When no 
confusion is possible we will use ~ instead of ,~(( T, h )). 

A set of wffs in a first-order language is consistent if and only if there is no 
formula for which that formula and its negation are theorems of the set. Our 
defeasible derivation relation is weaker than derivation in first-order logic. It is 
possible to defeasibly derive contradictory conclusions from an arbitrary set of 
defeasible rules. Because of that characteristic we will introduce a weaker 
notion for sets of defeasible rules. 

The following discussion omits proofs which can be found in the thesis [17]. 

Definition 3.1. Given two argument structures (T  1, hi)  and (T2, h2) in 
AStruc they will be called concordant if Y{ U T~ U T 2 ~- ±. 

As could be expected, subarguments of a given argument structure have the 
property of being concordant with each other. 

Proposition 3.2. Let ( T, h) ~ AStruc be an arbitrary argument structure, and 
let ~ be the family {( Ti, hi) }iCl of all ( T, h) subargument structures, then the 
members of ~ are pairwise concordant. 
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3.1. Argument combination (join) 

Definition 3.3. Let { T, h } ~ AStruc be an arbitrary argument structure, and let 
be the family of all its subargument structures. Given { T1, h ~ ) and { T 2, h~) 

in ,~, we define the combination of them as the argument structure ( T3, h3), 
where T 3 = T~ U T 2 and h 3 = h~ /x h 2. The operation will be denoted: 

{T3, h3) = (T , ,  h , )  kl ( T  2, h2}. 

Proposition 3.4. The combination o f  argument structures is a well-defined 
operation in ~. 

Proposition 3.5. Given two argument structures { T1, hi)  and { T 2, h2} E ~,  the 
combination {T 3 , h 3 ) = { 7 "  1 , h l ) l l { T 2 ,  h2) is such that {T3, h3)>_{T~,hl}  
and (T3, h3 )>  { 1"2, h2} and ( T  3, h3) is the minimal (in >) argument structure 
in ~ with that property which contains { T 1 , hl ) and { T2, h2) as subarguments. 

Proposition 3.6 (Associativity). The combination o f  arguments in ~ is associa- 
tive, i.e., if ( T 1 , h 1 ), { T 2, h2), and ( T3, h3} are subargument structures of  
then 

({T1, hi} L_] {T2, h2))U {Z3, h3) 

= {T1, h , )  L_J((T2, h2} t~ {T3, h3) ) . 

Proposition 3.7 (Commutativity).  The combination o f  arguments in ~ is com- 
mutative, i.e., if ( T 1 , h 1 }, { T2, h2} are subargument structures of  ~ then 

(T , ,  h~} L_l (T2, h2} = (T2, h2} LJ (T , ,  h~}, 

Definition 3.8. Given a subfamily {( T,/, hi/}}i,~g of {(Ti, h i}}~l ,  we define the 
generalized combination of the subargument structures in it as 

LU{(Ti/,hil}}i/EJ=(jUTi,~ Ahi,) • 
l ~ J  / /CJ 

Proposition 3.9. The argument structure (0, YU } ( if Y{ ~ is finitely representable) 
is an identity element with respect to the combining operation in the family 0% of  
subargument structures o f  a given argument structure ( T, h }. 

3.2. Argument intersection (meet) 

Given a subset T of A +, we will describe the rules on it as {A i >-- Bi}~e t. 
Using that representation we can consider the set { A i } i ~  1 of antecedents of 
rules in T and the set {Bi}iE t of consequents of those rules. If (T,  h} is an 
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argument structure for h, then the set (~" t/{B~}~Et) ~ is the set of literals for 
which there is a subargument structure contained in ( T, h ). 

Definition 3.10. A set of rules {Ai~--B~}iet is consistent if and only if 
{Bi}i~ , ~- J_. 

Remark 3.11. For arguments (T, h) ,  T is consistent because of the nonredun- 
dancy and the ~-consistency of arguments. 

Let T be an arbitrary, but consistent, subset of A 4. The question is "Is there 
a literal in ~ for which we can have an argument structure using T?" The 
literal (Y{ tO {B~}i~t) ~ has that property. It also has the property of being the 
strongest literal, in the usual sense, with that property. 

Definition 3.12. Let (T, h) E AStruc be an arbitrary argument structure, and 
let ~ be the family of all its subargument structures. Given (T~, h~) and 
(T2, h2) in ~, we define the intersection of them as the argument structure 
(Ta, h3), where T3= Tlfq T 2 and h 3 is defined as ( Y { U { B i } i e l f ,  where 
{Bi}ic I is the set of consequents of the rules in ~ .  The operation will be 
denoted: 

(T3, h3} = (T1, h , )  [-] (T2, h2) .  

Proposition 3.13. The intersection o f  argument structures is a well-defined 
operation in ~.  

Proposition 3.14. Given two argument structures ( T I, hi) and ( T 2, h2) ~ if', 
the intersection ( T3, h a ) = ( T1, h 1 ) [q { T2, h 2 ) is such that ( T1, h 1 ) >_ ( 7"3, h a ) 
and ( T 2, h2) >_ ( T3, ha) and ( T 3, ha} is the maximal argument structure in 
with the property o f  being a subargument o f  ( T 1, hi} and ( T  2, hE}.  

Proposition 3.15 (Associativity). The intersection o f  arguments in ~ is associa- 
tive, i.e., i f  (T1, hi )  , (T2, h2}, and ( T  3, h3} are subargument structures in 
then 

((T1, h~) ~ (T2, h2))7q (T  a, h3) 

= (T, ,  h , )  [-I((T z, h2} fq ( r  3, h3) ) . 

Proposition 3.16 (Commutativity). The intersection o f  arguments in ~ is com- 
mutative, i.e., i f  ( TI, h I ), ( T 2, h2) are subargument structures in ~ then 

(T~, h~) [-] (T2, h2) = (T2, h2) [q (T~, h~) .  

Definition 3.17. Given a subfamily {( Ti/, hi/}}ifi J of {( T i, hi)}~El, we define 
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the generalized intersection of the subargument structures in it as: 

[-~{(Tij, h%)}i, c j= l jg j  Ti~, (Y{ U (B~}~c,)~), ]cJ 

where {Bi}ic ~ is the set of consequents in Nj~j Ti. 

Proposition 3.18. The family ~ of subargument structures of  a given argument 
structure (T, h) has an identity element with respect to the intersection oper- 
ation. That identity element is the argument structure ( T, h ). 

Corollary 3.19. 7he family ~ with the intersection and combination operations 
defined over the argument structures forms a lattice. 

4. Justifications 

In the previous section we introduced the notion of argument structure and 
defined a specificity relationship on the set of all possible argument structures. 
The reason to define that relationship is to be able to "select" argument 
structures with the characteristic of being "better" than others. In this section 
we will define the selection process. 

4.1. Basic interactions among argument structures 

Arguments are objects that represent "pieces" of the reasoning process. 
They relate to each other in different ways. We have already seen an example 
in the subargument relation. Another example is the concordance among 
argument structures, i.e., the property which would allow to join them without 
producing an inconsistency. Going in the opposite direction is the disagreement 
relation that will be introduced in the next subsection. Some other interactions 
involving specificity are possible. We will introduce them now starting with 
those that are simplest to define. 

4.1.1. Disagreement 
It is possible for two argument structures to support two facts which together 

with the context Y{ are inconsistent, We will refer to the relationship between 
two argument structures in that situation as disagreement. Next we will present 
the formal definition of disagreement. 

Definition 4.1. We say that two argument structures T 1 for h~ and T 2 for h 2 
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disagree, denoted by 

(T, ,  h~) ~<~x (T2, hz) 

if and only if Y( U (h I, h2} ~- .1_. 

The following are examples of this relationship. 

Example 4.2. 

({E>---TC},-TC)~'<~c ({A ^ B>---C}, C) , : K = { E , A , B } .  

Example 4.3. 

({E>----7C},--7C)~'<3x'({A>--X},X), :K={E,A ,  X D C } .  

The following is not an example of this relationship, but motivates the next 
definition. 

Example 4.4. 

( (E>-- - -TB} , -1B) , ({E>---B,B>---A} ,A) ,  Y[={E} .  

4.1.2. Counterargument 
The counterargument relation tells us about the internal construction of an 

argument structure with reference to another argument structure. It is a 
refinement of the disagreement relation. It looks to the subarguments of a 
given argument structure in light of another argument, i.e., indicates the 
existence of subarguments of an argument structure which are in disagreement 
with the other argument. Formally: 

Definition 4.5. We say that an argument structure T 1 for h~ counterargues an 
argument structure T z for h z at h, denoted by 

(T  1, h~)@ -~h (Te, he) 

if and only if there exists a subargument ( T , h )  of (Tz, he) such that 
(T1, hi)  ~'<~x (T, h) ,  i.e., (T, h) C (T  2, h2) and Y/k.J {hi, h} ~- 5_. 

Remark 4.6. A fact h in the conditions of Definition 4.5 will be referred to as a 
counterargument point. 

Example 4.7. 

({E >- -7C} ,  7C)~---~C ( (A  A B>-- C, C > -  D}, D) , 

where ({E>---~C},--nC) is in disagreement with the subargument ({A A 
B>-' -C},C)  of ( { A A B > - C , C > - - D } , D ) .  
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4.1.3. Defeat 
The defeat relationship is a further refinement of counterargument, where 

the specificity relation comes into play. We will say that an argument structure 
(T~,h~) defeats another argument structure (T  2, h2) if it is the case that 
(T2, h2) contains a subargument structure (T, h) such that (T~, h~ ) disagrees 
with ( T, h) ,  and ( T~, h I ) is more specific than ( T, h ). That is: 

Definition 4.8. We say that an argument structure T~ for h~ defeats an 
argument structure T 2 for h 2, denoted by 

( Tl, hl) >> def ( T2, h2} 

if and only if there exists a subargument structure (T, h) of (T  2, h2} such 
that: 

(1) ( T 1, h~ ) ~___~h ( T2 ' h2), i.e., T 1 for h 1 counterargues T 2 for h 2 at h, and 
(2) ( T 1, h~) > (T, h) ,  i.e., T~ for h I is more specific than T for h. 

Remark 4.9. A fact h in the conditions of Definition 4.8 will be referred to as a 
defeater point. 

Example 4.10. 

({A ^ B A E >---aC}, ~C}  ~>def ({A A B >-- C, C>-- D}, D ) ,  

that is, the argument structure ({A ^ B ^ E > - - a C } ,  ~ C }  counterargues 
( { A A B > - - C , C > - D } , D )  at C and ( { A ^ B A E > - - - n C } , a C }  is more 
specific than ({A A B >-- C}, C) .  

4.2. Justifying arguments 

A fundamental issue in reasoning is to decide what the agent believes as a 
function of a given context and the set of defeasible rules forming his explicit 
knowledge. But how can he decide if a tentative conclusion is part of the 
implicit knowledge? Or how can he decide if that tentative conclusion is 
consistent with the implicit knowledge? According to our scheme this decision 
must be taken by analyzing what kind of support the tentative conclusion has. 
This can be accomplished by seeing which arguments are relevant to the 
conclusion. 

Given a fact h, there may be several argument structures in the set 
AStrue(A ~) of argument structures formed with members of A ~, which support 
h from the context K. Those argument structures relate to others in 
AStruc(A ~) by the defeat and counterargument relations. For an argument 
structure (T, h ) in AStrue(a ~), we may have a set I of argument structures 
which interfere with (T, h) ,  i.e., they counterargue (T, h). In I, the set of 
interfering arguments, there may be some arguments which defeat (T, h). 



Mathematical treatment of defeasible reasoning 141 

Those defeaters could in turn be defeated. If all the defeaters are defeated, the 
original argument structure (T, h)  becomes reinstated. The above discussion 
leads to an inductive definition, which is similar to Pollock's [12] and character- 
izes that process. 

Definition 4.11. Arguments are active at various levels as supporting or 
interfering arguments. 

(1) All arguments are (level-0) S-arguments (supporting arguments) and 
I-arguments (interfering arguments). 

(2) An argument (T1, hi)  is a (level-(n + 1)) S-argument if and only if 
there is no level-n I-argument ( T2, h 2) such that for some h, (/'2, h 2) 
counterargues (T1, hi)  at h, i.e., ji/(T2, h2) EAStrue such that, for 
some h, (T2, h2)~-->h (Tl ,h~) .  

(3) An argument ( T1, h I ) is a (level-(n + 1)) I-argument if and only if there 
is no level-n I-argument (/'2, h2) such that (Te, hz) defeats ( T1, hi) .  

Remark 4.12. A level-n S-argument will be denoted by Sn-argument and a 
level-n I-argument will be denoted by In-argument. Also notice that we 
dropped the parentheses. 

Definition 4.13, We say that an argument (T, h)  in AStruc justifies h if and 
only if there exists m such that, for all n ~> m, ( T, h)  is an Sn-argument for h. 
We say that h is justified in 12 C AStruc if there is a ( T, h ) E I2 that justifies h. 

Lenuna 4.14. Let ( T, h) be an argument structure in AStrue, such that ( T, h) 
justifies h. Then every subargument ( R, q) of  ( T, h ) justifies its conclusion q. 

Proof. The proof comes from the fact that any possible defeater of (R, q) will 
also be a defeater for (T, h) .  And since (T, h)  justifies h, no effective 
defeater exists. [] 

We say that h is provisionally justified at level n iff there exists an S n- 
argument which supports it. A set of provisionally justified facts is called stable 
iff every member of it is justified. 

It is possible to define a sequence {Xn} of operators over AStruc in 
correspondence with Definition 4.11 in the following way. For a given k, let 
2~ k(AStruc) be the set of h such that there exists ( T, h)  that is in AStrue and is 
an Sk-argument; i.e., ,vk produces the set of partially justified facts at level k. 
This definition allows us to talk about the set of justified facts in operational 
terms, as in the following lemmas. 

Lemma 4.15. I f  Z"(AStruc) = ~"+l(AStrue), then Z"(AStruc) is stable. 
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Proof. The proof of this lemma is obvious from the definition of stable set. 
Once ~" has "repeated" itself, i.e., ~ ~(AStruc) = ~"  +l(AStruc), that means that 
no new interfering argument has been reinstated. Therefore, no I"-argument 
can get defeated at level n + 1 and no S"-argument can get counterargued. [] 

Now the open question is whether that situation is ever reached. The next 
theorem will answer that question. 

Theorem 4.16. For any defeasible logic structure (Y{, A) with finite Astruc, there 
is a unique stable set, and the operator ~ will find it. 

Proof (Sketch). The set ASt ruc /~ ,  as we have shown previously is partially 
ordered by "_~". Consider the set ~ (ASt ruc /~)  of all the subsets of AStruc /~ .  
Some of their members are totally ordered sets, i.e., chains. These chains are 
formed by equivalence classes which contain equi-specific arguments. But even 
though two arguments are equi-specific they may support different facts. 
Nevertheless, from one of the chains in ~(ASt ruc /~)  we can extract chains of 
arguments which support the same fact. Being finite, from those chains it is 
possible to extract the most specific argument for every fact. We collect all the 
most specific arguments in a set that for reference convenience we will call 
9-(AStruc). Notice here that we may have in 3-(AStruc) more of one argument 
for a fact, but if that case occurs the argument structures are unrelated by ">_". 

We apply the justification procedure of Definition 4.13 to J-(AStruc), and 
this is equivalent to applying it to AStruc, as is clear from the following 
discussion. It is obvious that we have lost no interesting argument by restricting 
ourselves to 3-(AStruc). For every argument structure in AStruc, there is an 
argument structure in g/-(AStruc) which is at least as specific as the one in 
AStruc. So in looking for counterarguments of an argument structure we will 
obtain the same counterargument points. The same is true for defeaters, with 
the difference that now we only have to look at the more specific argument 
structures possible for a defeater point. 

Now, given one of these arguments in J-(AStruc), ( T, h) ,  we consider the 
set Counter(( T, h) ) of counterarguments of ( T, h)  in ~-(AStruc). Obviously 
the set can be empty. The set Counter(( T, h)) contains only the more specific 
counterarguments for every possible counterargument point of (T,  h) .  For 
every member (R,  q) in Counter(( T, h)) there is a set of possible defeaters 
Defeaters((R, q)) which contains only defeater arguments which are more 
specific than (R,  q) ;  again the set can be empty. Defeaters ((R, q)) contains 
only the more specific defeaters (S, r)  for every possible defeater point of 
(R,  q) .  This construction can be performed until we get a " t ree"  where the 
nodes of the tree are connected by the "counterargument" relation, the root to 
its children, or the "defeat"  relation between the rest of the levels. This tree 
contains the whole dialectical structure for the argument being considered. 
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We define an argument line as the walk that it is possible to construct from 
one of the leaf nodes of the tree to the first node before the root, i.e., the last 
node in an argument line is a counterargument. We can apply the second 
operation defined in the justification procedure to the set of argument lines 
obtained from the tree. If an argument line "survives" the test the argument is 
defeated. 

These argument lines are sequences ( (  T l, h 1), ( T2, h2), . . . , ( T,,  h~) ) 
where ( T l , h l )  is the counterargument. The sequence is ordered by the 
specificity relation, i.e., (Tn, hn) > - . .  > (T 2, h2) > (T1, hi) .  If n is odd, the 
counterargument survives; if n is even, the counterargument is defeated as is 
easy to see. [] 

Definition 4.17. We will refer to the stable set defined by Theorem 4.16 as ,~=. 

5. Discarding arguments 

In this section we will show some relationships among arguments and 
justifications aiming to find avenues pointing to efficient implementations. In 
that direction, it is importa'~t to find properties that will characterize arguments 
that can be discarded in order to reduce the size of the search space. Again, 
proofs are omitted. 

We prove propositions essential to proving the claim that covered arguments 
can be discarded. This is a weak pruning method, and serious investigation of 
pruning will have to look at stronger claims. But our interest here is how the 
formalism allows provable claims. 

Lemma 5.1. Given two argument structures (TI ,  h 1 ) and ( T  2, h2) in AStruc 
such that ( T 1, h i )  >_ (T2, h2) and Yd U {hi} ~ { h2}, then ( T 1, h2) is an argu- 
ment structure. That is, T 1 is an argument for  h 2, and ( T~, h2) >_ ( T 2, h2), i.e. 
T 1 for  h 2 is more specific than T z for h 2. 

Lemma 5.2. Given two argument structures ( T 1, h i )  and ( Tz, h2) such that 
( T l , h l ) > _ ( T 2 ,  h2) and ~t.J{h~}~-{h2}, i f  h 2 is justified in 12U 
{ (T~ ,h~) ,  (T2, h2) } then h 2 is justified in 1 2 U { ( T l , h l ) ) ,  where 12 is any 
subset o f  AStrue. 

Lemma 5.3. Given two argument structures ( T i, hi)  and ( T  2, h2) such that 
( Tl, hl)  covers ( T2, h2), i.e., ( Tl, hl)  >_ ( T2, h2) and Yf t3 Tl ~ x, for all x 
in Co(T2), then if  p is justified in 12 U {( T 1 , h i ) ,  ( T 2, h2) }, p is also justified in 
12 t_l { ( T1, h 1 ) }, where 12 is any subset o f  AStruc. 

Proposition 5.4. Given ( T 1, h I ), ( T 2, h2), and ( T, h)  in AStruc, where 
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( T,, h, ) covers ( T 2, h2), then if ( T 2, h2) contains a subargument structure 
(R, p)  such that (n ,  p)@-~P ( r ,  h), then (T  l, h,) contains a subargument 
structure ( S, p)  such that ( S, p ) ~---~ P ( r, h ) . 

This allows covered arguments to be discarded while keeping the arguments 
that cover them, with no loss in ability to counterargue. 

Proposition 5.5. Given (T  1, h~), (T  2, h2), and (T, h) in AStruc such that 
(T~,h~) covers (T2, h2), then if (T2, h2)>>def(T,h) then (Tl ,hl) '>de f 
( T , h ) .  

This allows covered arguments to be discarded while keeping the arguments 
that cover them, with no loss in ability to defeat. 

Given 12 C AStruc and ( T l , h ~ ), ( T 2 , h 2 ), ( T, h ) E AStruc, where ( T1, h ~ ) 
covers ( T2, h : ) ,  define 

~'~big ~--" ~'~ ~'j {(T,  h),  (T~, hi) ,  (T  2, h 2 ) } ,  

~'~small = ~'~ U {(T,  h ) ,  (T1, h~)} .  

Proposition 5.6. I f  (T, h) is an S"-argument in •big, then (T, h) is an 
S~-argument in Os~au. 

This is the inductive step toward completing the argument that covered 
arguments can be discarded if at least one of their covers is retained. The 
supporting arguments are not disrupted by discarding a covered argument. 

6. Some interesting examples 

We will show some examples presented in the literature of defeasible 
reasoning to show the behavior of the system. 

Example 6.1 (Opus does notfly). An example of how information regarding a 
subclass overrides more general information corresponding to superclasses. 

Birds tend to fly 

Penguins tend to not fly 

All penguins are birds 

Opus is a Penguin 

Does Opus fly? 

(B(x )  >-- F(x))  , 

(P(x )  >-- 7 F ( x ) )  , 

(P(*) ~ B(x))  , 

(P(opus) )  , 

( F ( o p u s ) ? ) .  

The context and defeasible rule set are 

= {P(opus), P(opus) D B(opus)}, 
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Hies(Opus) -Hies(Opus) 

Bird(Opus) Penguin(Opus) 

Penguin(Opus) ~- Bird(Opus) 

Fig. 1. Example 6.1. 

z = (B(opus) > -  p(opus), P(opus) > -  F(opus)} 

respectively (see Fig. 1). Two argument structures are interesting: 

( TI, F(opus)) = ({B(opus)  >-- F(opus)}, F(opus)>, 

( T 2, mF(opus) > = ( { P(opus) >-- 7F(opus)} ,  -TF(opus) ) . 

We have the following disagreement 

( T1, F(opus)) D<~ x ( T2, 7 F(opus)>. 

Moreover 

( 7"2, -7F(opus)) ~_.~F(opus) ( T,, V(opus)>. 

But 

( T2, -7 F(opus)) > ( T1, F(opus)>. 

Therefore, 

( T2, "-7F(opus)> >>de, ( T1, F(opus)>, 

hence ( Tz, -7F(opus) > justifies -7F(opus). 

Example 6.2 (Nixon Diamond).  This canonical example is devised to show how 
the reasoner behaves in ambiguous situations and is due to Reiter [15]. 

Quakers tend to be pacifist 

Republicans tend to be non-pacifist 

Nixon is a quaker 

Nixon is a republican 

Is Nixon pacifist? 

(Q(x)  >-- P(x)), 

(R(x) >-- -1P(x)),  
(Q(nix)) , 
(R(nix)) , 
(P(nix)?) . 

Clearly, there are three possible behaviors. The first, which is clearly undesir- 
able, will give one of the two possibilities arbitrarily. The second, which is the 
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Pacifist(Nixon) -Pacifist(Nixon) 

Quaker(Nixon) Republican(Nixon) 

Fig. 2. Example 6.2. 

behavior of reasoners using the inferential distance ordering instead of length 
of the path [20], will give two answers, leaving the decision to whomever uses 
the system. This kind of reasoner is called credulous because it gives good 
standing to all the possible conclusions. The last, the so-called skeptical 
reasoner, does not decide about ambiguity [5] by not giving any answer. Our 
reasoner is skeptical. 

The context and defeasible rule set are 

~{ = {R(nix),  Q(nix)} , 

A = {Q(nix) > -  P(nix), R(nix) >-  --aP(nix)} 

respectively (see Fig. 2). We have two argument structures, one for P(nix) and 
one for 7P(n ix ) ,  namely, 

( T,,  P(nix)> = ({Q(nix)  >-- P(nix)}, P(nix)) , 

< T2,-TP(nix))  = ({R(nix))  >--- -TP(nix)}, ~ P ( n i x ) ) .  

None of those argument structures defeats the other; they interfere and they 
are not ordered by specificity. 

Example 6.3 (Cascaded Ambiguities). This example is an extension of the 
Nixon Diamond constructed to show how simple-minded skeptical reasoners 
can be fooled to believe in the militarism (non-anti-militarism) of Nixon [5]. 

Quakers tend to be pacifist 

Republicans tend to be non-pacifist 

Pacifists tend to be anti-military 

Republicans tend to be football fans 

Football fans tend to be non-anti-military 

Nixon is a quaker 

Nixon is a republican 

Is Nixon anti-military? 

The context and defeasible rule set are 

( Q ( x )  >-- P ( x ) ) ,  

(R(x)  > -  -~ P(x)) , 

(P(x)  ~ -  A ( x ) ) ,  

(R (x )  >-- F(x))  , 

(F(x)  >-- ~A(x)), 
(Q(n ix ) )  , 

(R(nix) )  , 

( A ( n i x ) ? )  . 
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Y{ = { R(nix), Q(nix) } , 

A = {Q(nix) >- P(nix), R(nix) >- 7P(nix),  P(nix) >- A(nix) ,  
R(nix) >-  F(nix), F(nix) >- 7A(nix)  } . 

respectively (see Fig. 3). We have two argument structures, one for A(nix) and 
one for ~A(nix) ,  namely, 

( T,, A(nix) ) = ( { Q(nix)>-- P(nix), P(nix)>- A(nix)}, A(nix) ) , 

( T2, -TA(nix)) = ({R(nix) >- F(nix), 
F(nix) >- 7A(nix)} ,  7A(nix)  ) . 

Neither of those argument structures defeats the other and our reasoner 
remains skeptical. 

Notice that some skeptical reasoners will consider the "path" (using inheri- 
tance reasoners terminology), { Q(nix) >-- P(nix), P(nix) >- A(nix) } as being 
preempted by {R(nix) >- ~P(nix)} and hence leaving {R(nix) >- F(nix), 
F(nix) >---TA(nix)} free to support the conclusion about Nixon being non- 
anti-military. That situation does not arise in our case. The argument structure 
( {R(nix) >-- ~P(nix)},  7P(nix)> counterargues ( T 1, A(nix)) at P(nix), but 
( {R(n i x )>-TP(n i x ) } ,TP(n i x ) )  is not more specific than (T , ,A (n ix ) ) .  
Therefore, ( { R(nix) >-- 7P(nix)},  7P(nix) > does not defeat ( TI, A(nix) >. 

Anti-Military(Nixon) 

Pacifist(Nixon) -Pacifist(Nixon) 

Ouaker(Nixon) 

-Anti-Military(Nixon) 

FootballFan(Nixon) 

Republican(Nixon) Republican(Nixon) 

Level T l Tz T3 

1 IS IS IS 
2 I I 1 
3 I I 1 

Fig. 3. Example 6.3 (S = Supporting, I = Interfering). 
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Gray(Clyde) -Gray(Clyde) 

Elephant(Clyde) RoyalElephant(Clyde) 

RoyalElephant(Clyde) ~- Elephant(Clyde) 

Fig. 4. Example 6.4. 

Example 6.4 (Royal African Elephants). This example deals with "on-path 
versus off-path preemption" and is due to Sandewall [16], in the context of 
inheritance reasoners. 

Elephants tend to be gray 

Royal elephants tend to be non-gray 

Royal elephants are elephants 

African elephants are elephants 

Clyde is a Royal elephant 

Clyde is an African elephant 

Is Clyde non-gray? 

The context and defeasible rules are 

(E(x) >-  C(x)), 
(R(x) > -  -7 G(x)) , 

(R(x) ~ E(x)), 
( A ( x )  D E(x)), 
( R ( c l y d e ) )  , 

( A ( c l y d e ) )  , 

( - -qG(c l yde ) )  . 

~{ = { R(clyde), A(clyde),  R(clyde) ~ E(clyde), A(clyde) D E(clyde) } , 

a = { E(clyde) >-- G(clyde), R(clyde) >-- --7 G(clyde)} 

respectively (see Fig. 4). We have three argument structures, two for G(clyde) 
and one for -7 G(clyde), namely, 

( Zl, G(clyde) ) = ( { E(clyde) >-- G(clyde)}, G(clyde) ) , 

( T2, G(clyde) ) = ( { E(clyde) >-- G(clyde) }, G(clyde) ) , 

( T 3, --7 G(clyde)) = ( { R(clyde) >-- "-7 G(clyde) ), --1 G(clyde)) .  

Clearly, the more specific argument structure is (T3,---1G(clyde)), matching 
our intuitions. 

Example 6.5 (Adul t  University Students). This example deals with "defeasible 
specificity", which our system does not have, and is due to Geffner [2]. Geffner 
will draw a conclusion here, while we will not. 

Adults tend to work (A(x)  >-- W(x)) ,  

University students tend not to work (U(x) >-- ~ W ( x ) ) ,  
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Works(K) -Works(K) 

T T 
Adult(K) UniversityStudent(K) 

UniversityStudent(x) >-- Adult(x), but not UniversityStudent(K) }- Adult(K). 

Fig. 5. Example 6.5. 

University students tend to be adults 

Ken is a university student 

Ken is an adult 

Does Ken not work? 

(U(x)  > -  A ( x ) )  , 

( U ( K ) )  , 

( A ( K ) )  , 

( T W ( K ) )  . 

The arguments are depicted in Fig. 5. Although U(x) >- A(x),  this cannot be a 
part  of either argument (first because it makes each argument nonminimal, and 
moreover ,  because it causes inconsistency in the second argument) ,  so there is 
no specificity. Had the evidential context been only that Ken is a university 
student,  from which A(K) is derived, then the second argument would have 
been more specific. 

Example 6.6 (Prima Facie Inconsistency of Rules). This example deals with 
rules that are not "epsi lon-sound" in the sense of Geffner  and Pearl [2]. Their  
system cannot entertain such rules, while ours simply draws no conclusion. 

( P > - Q ) ,  (P>--TR) ,  ( Q > - R ) ,  

( P ) ,  (R or ~ R ) ? .  

The arguments are depicted in Fig. 6. P activates the first argument,  as does 

R 

/] 
7 

~R 

Fig. 6. Example 6.6. P activates T1, as does P ^ Q. Each suffices for T 2. Meanwhile P activates T2, 
which suffices for T1. Neither is more specific. 
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P A Q. Each suffices for the second argument. Meanwhile, P activates the 
second argument, which suffices for activating the first argument. Neither is 
more specific; no conclusion is justified. 

Example 6.7 (Yale Shootings). This example deals with the Yale Shooting 
example and its extension by Hanks and McDermott [4] (see Fig. 7). They note 
that Poole's original system can choose the second argument over the first 
argument, but complain that it cannot block the first argument once extended. 
Blocking the extended argument, as desired, is trivial in this system. This was 
also true of the system in [7]. Moreover, the present system permits the second 
argument to defeat the first even when the final rule is replaced by a material 
conditional. 

Aliveness tends to persist 

Loadedness tends to persist 

Firing a loaded gun coerces a 
change in Aliveness 

Fred is Alive 

The gun is loaded 

The gun is fired 

Does Fred die? 

/ / \  
Alive@3 Raining@3 

Alive@2 

Alive@l 

T 
Alive@0 

(Alive@t >-- Alive@t + 1), 

(Loaded@t >- -1Loaded@t + 1), 

(Alive@t A Fired@t A Loaded@t >-- 
~Alive@t + 1), 

(Alive@O), 

(Loaded@l), 

(Fired@2), 

(7 Alive@3) . 

-Alive@3 

Alive@2 Loaded@2 

Alive@l Loaded@ 1 

t 
Alive@0 

Fig. 7. T 2 defeats T1, and it will defeat the proposed extension of TI. The top rule in T2, 
Loaded@2 A Fired@2 A Alive@2>--~Alive@3 could be replaced by a material conditional, 

Loaded@2 A Fired@2 ^ Alive@2---~--Alive@3 and there would still be defeat. 
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Clearly the theory 

T 1, Alive@3> = < {Alive@O >-- Alive@l, Alive@l >-- Alive@2, 
Alive@2 >-- Alive@3}, Alive@3> 

is defeated by the theory 

( T  2, -1 Alive@3> = < {Alive@O >-- Alive@l, Alive@l >-- Alive@2, 
Alive@2 >-- Alive@3, 
Loaded@l >-- Loaded@2, Loaded@2 >-- Loaded@3, 
Alive@2 A Fired@2 A Loaded@2 >-- -qAlive@3}, 
~Alive@3> . 

In fact, if the material conditional 

Alive@t A Fired@t A Loaded@t D 7Al ive@t + 1 

is included in the necessary part of the evidence, then the theory 

(T2b, ~Alive@3) = < { Alive@O >-- Alive@l, Alive@l >-- Alive@2, 
Alive@2 >-- Alive@3, 
Loaded@l >-- Loaded@2, Loaded@2 >-- Loaded@3}, 
--q Alive@3 > 

defeats the first theory. Extending the first theory with the rule 

Alive@3 A Raining@3 >-- Wet@4, 

and the evidence Raining@3 just produces a theory that is defeated by the 
counterargument T 2 (or T2b ). 

7. A justification finder 

Implementations of defeasible reasoners are rarely seen beasts. An early 
attempt to introduce defeasible reasoning programming with specificity was 
Nute's d-Prolog [10, 11]. The language of d-Prolog provides facilities to define 
absolute rules, "every bat is a mammal", defeasible, rules, "birds fly", and 
defeater rules, "sick birds do not fly". The purpose of defeater rules was to 
account for the exceptions to defeasible rules. For instance, given the defeas- 
ible rule "birds fly", the defeater rule "sick birds do not fly" will stop us from 
concluding that "Tweety flies", in the presence of the fact "Tweety is a sick 
bird". 

7.1. The language implemented 

The basic ideas of logic programming are introduced here using the standard 
notation for them. We will slightly modify that notation as we introduce our 
language. 
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Definition 7.1. A definite clause is a clause of the form: 

B ( U - - - A  1 . . . . .  An 

with only one atom as the consequent.  The consequent B is called the head and 
the antecedent  A I . . . .  , A,, is called the body of the definite clause. 

It is customary to regard all clauses as implications, even though they have 
no head or body. We will alter this for our language in a way that is consistent 
with this presentation. The reasons for that modification will be given below. 

Definition 7.2. A definite goal is a clause of the form: 

(---- A 1 . . . . .  A, , ,  

i .e.,  a definite clause with an empty consequent.  The A i are sometimes called 
subgoals of the goal. 

A unit clause is a clause of the form: 

B (  , 

i .e.,  a definite clause with an empty body. We will alter this representation 
introducing the special atom true. Our unit clauses will be written: 

B ~ true. 

Unit clauses are also called facts. 

Definition 7.3. A Horn clause is a clause which is either a definite clause or a 
definite goal. 

We have extended the representation in two ways. First, we added defeasible 
clauses, and second, we introduced a relation neg used to represent negative 
facts. 

Definition 7.4. A defeasible clause is a clause of the form: 

B - < A  1 . . . .  , A n  

with only one atom as the consequent.  The consequent B is called the head of 
the defeasible rule and the antecedent A 1 , . . . ,  A n is called the body of the 
defeasible clause. 

The neg relation will allow the representation of negative facts in the system. 
Negation is handled in the same way as proposed by Nute [10, 11]. This 
relation is not related in any way to negation as failure and its only meaning is 
to refer to a negative fact. Negative facts relate to positive facts in the usual 
way. The system will treat the relation neg as a prefix forming part of the 
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"name" of the atom and not as an operator. The system will recognize that 
neg neg A = A. That is, the goal neg A will be assumed as a consequence of a 
set R of definite and defeasible clauses if and only if neg A is deducible from R 
via a finite number of applications of modus ponens. The goal neg neg A will 
be assumed as a consequence of a set R of definite and defeasible clauses if and 
only if neg neg A, or A, is deducible from R via a finite number of applications 
of modus ponens. Thus, the relation neg does not have any special status; the 
system will treat the atom neg A in the same way as any other atom C. 

Our neg operator can appear in the head of the rules, defeasible and 
otherwise. For instance, 

neg A , ' . .  true, 

neg A .¢Z----- neg B, C ,  

neg A --< B, C, neg D , 

are legal rules. Notice that the first rule is asserting a negative fact. 

Definition 7.5. A knowledge base K is a finite set of definite clauses and 
defeasible clauses, possibly containing atoms affected by the neg relation. A 
knowledge base is the equivalent of what previously was called a defeasible 
logic structure. In a knowledge base ~ the set Y( will be represented using 
definite clauses, and the set A will be represented using defeasible clauses. 

7.2. Finding justifications 

The interpreter will work following the lines of the proof of Theorem 4.16 
taking advantage of the inference mechanism of Prolog. 

The input to j f  is a knowledge base ~, and a ground query Q. The contents 
of the knowledge base were described in Section 7.1. A ground query Q is a 
ground instance of an atom, possibly affected with the prefix neg. The justifier 
is invoked by issuing the command: 

analyze(Q), 

which will start the process of testing whether there is an undefeated argument 
which supports Q from the contents of K. 

If the search finds a justification the output of the system for such a query 
will be one of the argument structures that are justifying Q, and all the possible 
defeaters that were considered. All the justifiers can be obtained by rejecting 
the answer, and forcing the system to keep searching. 

If the answer is negative, the system will have two possible answers. The 
query Q has no supporting argument. Or even though arguments can be 
constructed to support it, all of them were defeated. In the latter case, the 
system will return all the potential justifiers, already defeated, with its associ- 
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ated defeaters. We will disregard the uninteresting case when Q has no 
supporting argument. 

The process begins by attempting to construct an argument for the given 
query Q. Arguments for Q are constructed by using backward chaining over 
the knowledge base. We will follow Shapiro's [19] terminology. A ground 
reduction of a goal G in a knowledge base ~ is the replacement of G by the 
body of a ground instance of a clause (definite or defeasible), whose head is 
identical to G. A defeasible inference tree consists of nodes and edges which 
represent the goals reduced during the construction. The root of the tree is the 
original query and the nodes are the goals reduced during the backward 
chaining. Edges represent the relation between the head of the rule used in the 
reduction and the atoms in the body of that rule. The backward chaining on a 
node G stops whenever G is supported by a unit clause, i.e., a clause like 
G 4, true. The following example will help to describe the process: 

Example 7.6. Assume the following knowledge base ~: 

flies(x) --< bird(x) 
neg flies(x) -< penguin(x) 
bird(x) ~ penguin(x) 
penguin(opus) ,g-g---true 

(usually, birds fly) 

usually, penguins do not fly) 

(penguins are birds) 

(opus is a penguin) 

After the query "analyze(flies(opus))", the system will form the argument 

{flies(opus) --< bird(opus), 

bird(opus) ~ penguin(opus), penguin(opus) ~ true) 

by backward chaining from flies(opus). 

The system will always form the most specific argument. If the system is 
forced to backtrack from a unit clause G ~ true, it will not attempt to find 
support for G in other clauses. Following those clauses will only produce a less 
specific argument. This observation was already suggested in the proof of 
Theorem 4.16. 

After forming an argument, the system will try to find counterarguments for 
the recently formed argument by backward chaining from the negation of 
atoms in the original argument. Actually, the system will form a set with the 
atoms in the argument, and will add to that set any atom that is derivable from 
those atoms and the definite clauses in ~. For instance, in the example above, 
it will find the counterargument 

{ neg flies(opus) --< penguin(opus), penguin(opus) ~ true} . 

Finally, the system will test the argument and the counterargument for 
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specificity using models of argument activation (see Simari [18]) and models of 
the counterargument. In short, M is an activation model for (T, h) if M is a 
model of 3'f N and M is also a model for some e E Sentc(Sf ) and for the rules 
that form the subset T' of T such that Y{~ U {e} U T' ~ h. Using those criteria 
in our example, we will find that any activation model for the argument for 
neg flies(opus) is an activation model for the argument for flies(opus). But 
there is an activation model for flies(opus) which is not an activation model for 
neg flies(opus), namely the one where bird(opus) is true but penguin(opus) is 
not. 

If the argument is defeated, as is the case in the example, the system will 
backtrack in the process that formed the original argument, discarding the last 
rule added to the tree, trying to replace it with another. If it finds one, the 
process of finding and testing defeaters is repeated. Otherwise, further back- 
tracking is necessary. This process will continue until an undefeated argument 
is produced or all the backtracking possibilities are exhausted. 

8. Conclusions 

In this paper we have presented a mathematical approach to defeasible 
reasoning. This approach is based on the notion of specificity introduced by 
Poole and the general theory of warrant as presented by Pollock. Poole's 
approach to specificity was correct but he stopped short of presenting a 
complete approach to it. We proved that an order relation can be introduced 
among equivalence classes under the equi-specificity relation. Poole did not 
pursue operational aspects of applying specificity. We did that here. 

Pollock has suggested an operational framework for performing reasoning, 
but he dismissed useful and prevalent generalizations of specificity. Taking his 
definition of warrant, we have applied it and transformed it into a justification 
schema which defines the set of justified facts from a given defeasible logic 
structure. One result of this paper is a theorem that ensures the termination of 
the process of finding the justified facts. The proof of that result is based on the 
order relation mentioned above. 

In order to implement the theoretical ideas, a suitable restriction of the 
language has been defined. The language used to represent the context Yg has 
been restricted to a subset of first-order logic, Horn clauses, and the language 
used to represent defeasible rules in a has been restricted in a similar way, to a 
Horn-clause-like syntax. The interpreter was written in Prolog, and running on 
top of it provides a defeasible reasoning tool for Prolog. 

The implementation of the system has taken advantage of the theoretical 
findings. The general mechanism used in the implementation to find justifica- 
tions is based on the structures built in proof of the theorem on termination. 
The process used to compare two argument structures for specificity is based 
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on semantical work that is not reported here. 6 Two more lemmas (Lemmas 
2.24 and 2.25) define a reduced search space. Meanwhile, it is the prospect of 
implementation that suggested many of these theorems. 

In comparison with inheritance, this system generalizes the idea of path, 
clarifies the logic of reinstatement, and even in its Horn clause form, provides 
more expressive language. In comparison with [7], this system shares the same 
spirit and many of its syntactic considerations, though reproduces almost none 
of the details. In particular, 5~{, A, and > -  are taken from [7], which in turn 
originates with Kyburg [6]. Further, [7]'s definition of arguments as digraphs 
confuses definitional and implementational issues, which this paper separates. 
In comparison with Geffner, this approach represents an alternative, older 
paradigm, based on arguments instead of irrelevance. 

To summarize, the introduction of defeasible logic structures as a way of 
performing defeasible reasoning represents the unification of ideas in a formal 
and concise system which exhibits a correct, and uniform, behavior when 
applied to the benchmark examples in the literature. The investigation of the 
theoretical issues has aided the study of how this kind of reasoner can be 
realized on a computer, leading to an efficient implementation. We believe that 
the presentation here may have more permanence than past approaches to 
defeasible argument. 
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